REPORT

ON

THE

N65-33776

FUNDAMENTAL STUDIES ON THE SYNTHESIS OF HEAT-RESISTANT POLYMERS

T O

THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D.C.	N 66 13161
PERFORMED	CFSTI PRICE(S) \$
UNDER	Hard copy (HC)
	Microfiche (MF)
nasa grant neg339	ff 653 July 65

SEPTEMBER, 1965

	N 66 13161	
9 2	(ACCESSION NUMBER)	(THRU)
20	9	/
1	(PAGES)	(CODE)
FACII	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

DEPARTMENT OF CHEMISTRY

UNIVERSITY OF NOTRE DAME

NOTRE DAME, INDIANA 46556

PROGRESS REPORT NUMBER 7

ON THE

FUNDAMENTAL STUDIES ON THE SYNTHESIS OF HEAT-RESISTANT POLYMERS

THE SYNTHESIS AND EVALUATION OF POLYMERIC SCHIFF BASES FROM XYLYLIDENE TETRAALKYL ETHERS

PERFORMED

UNDER

NASA GRANT NsG339

BY

G. F. D'ALELIO
PRINCIPAL INVESTIGATOR

DEPARTMENT OF CHEMISTRY

UNIVERSITY OF NOTRE DAME

NOTRE DAME, INDIANA 46556

SEPTEMBER 15, 1965

FOREWORD

This report is a summary report of the researches performed under NASA Grant NsG339 for the period 31 January 1965 to 15 September 1965 on the synthesis of heat-resistant polymers. The technical aspect of this grant is administered by Mr. Bernard Achhammer, Office of Advanced Research and Technology, NASA Headquarters, Washington, D.C. 20546.

The research under this grant is being conducted in the Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556 under the technical direction of Professor G. F. D'Alelio, principal investigator.

This report covers studies performed by G. F. D'Alelio and Thomas Ostdick, O.S.B.

Date September 15, 1965

Signed

F. D'Alelio

Principal Investigator

ABSTRACT

13161

Black polymeric Schiff bases, which pass through a fusible stage have been synthesized, from p-xylylidenetetra-n-butyl ether and either m- or p-phenylenediamine or their benzylidene derivatives in the absence or presence of benzalaniline as a solvent. The differences between the polymers are small. The polymers derived from m-phenylenediamine and its benzylidene derivative have heat-resistance properties at least as high as those prepared from the para compounds and are equivalent to Schiff base polymers prepared by bis-Schiff base exchange reactions. The syntheses from the meta compounds proceed more smoothly than the para compounds. Since the cost of m-phenylenediamine is much lower than the p-phenylenediamine, the use of the meta diamine is preferred and recommended. When the condensation of the reagents is carried to a temperature in the range of 425°C to 600°C, the heat-resistance of the best polymers is 550°C in air (1022°F), and 675°C (1247°F) in nitrogen. When the condensation is carried to a temperature of 1176°C, the best polymers show a heat-resistance of 600°C (1112°F) in air and 1176°C (2026°F) in nitrogen. Some secondary reaction appears to occur when the polymers are heated at above 600°C in nitrogen and the resulting polymers are not typical chars but retain their bright, fuxlor shiny appearance.

TABLE OF CONTENTS

		Page
I	Introduction	1
II	Polymerization Reactions	4
	A. General Experimental Technique	4
	B. Individual Reactions of Xylylidenetetra-n-Butyl Ether with Phenylenediamines and Their Derivatives	4
	1. Experimental	4
	a. With the Phenylenediamines	5
	i. Reactions of Xylylidenetetra-n-butyl Ether with m-Phenylenediamine	5
	a) In Benzalaniline	5
	b) Without Benzalaniline	5
	ii. Reaction with Mixture of m- and p-Phenylene-	5
	a) 75 Mole % m-Phenylenediamine	5
	b) 50 Mole % m-Phenylenediamine	5
	c) 25 Mole % m-Phenylenediamine	5
	iii. Reaction with p-Phenylenediamine	7
	a) In Benzalaniline	7
	b) Without Benzalaniline	7
	1) With Initial Reflux	7
	2) To Obtain Yellow Polymer	7
	b. With Dibenzylidenephenylenediamines	8
	i. Reactions of Xylylidenetetra-n-butyl Ether with Dibenzylidene-m-phenylenediamine	8
	a) In Benzalaniline	8
	b) Without Renzalaniline	8

	ii. Reactions of Xylylidenetetra-n-butyl Ether With Dibenzylidene-p-phenylenediamine	ç
	a) In Benzalaniline	9
	b) Without Benzalaniline	9
	2. General Discussion	10
ш	Postheating of Polymers	12
	A. Postheating at 425°C and 600°C	12
	1. General Experimental Technique	13
	B. Postheating of Individual Polymers	14
	1. Experimental	14
	C. Postheating at Temperatures Above 600°C	16
	D. General Discussion	17
IV	Thermogravimetric Analyses	17
	A. Experimental	17
	1. Thermoanalysis in Air	17
	2. Thermoanalyses in Nitrogen and Recycles in Nitrogen and Air	21
	a. In Nitrogen	21
	b. Recycle in Nitrogen	21
	c. Recycle in Air	25
	B. General Discussion	25
V	Summary and Conclusions	32
VI	Future Research	33
VII	Acknowledgment	34
VIII	Glossary	35
IX	Bibliography	36
x	Appendix	

I. Introduction.

In a previous report, a number of reaction systems for the synthesis of conjugated polymeric Schiff bases were proposed for further study. Such studies were necessary to assist in the final selections of the polymerization systems which produce polymers with the best properties of heat resistance.

This report concerns investigations of the synthesis and heat-resistance properties of polymers arising from the reaction of xylylidenetetra-n-alkyl ethers with meta- and para-phenylenediamines and their dibenzylidene derivatives, as well as of the influence of benzalaniline as solvent and of the effects of postheating on the heat-resistant properties of the polymers.

Earlier work had used xylylidenetetraethyl ether and xylylidenetetran-butyl ether as the aldehyde derivatives in the syntheses of the polymeric
Schiff bases. In the present work the butyl derivative is used exclusively.
It appears to be an ideal reagent for these reactions because it is easily
prepared and also because its reactivity, which is lower than that of the
ethyl derivative, allows a longer reaction time during the fusible polymer
stage in the polymerization process.

The polymerization reactions investigated in these studies are given by the following equations:

and

n
$$(H_9C_4O)_2HCC_6H_4CH(OC_4H_9)_2 + n C_6H_5CH=NC_6H_4N=CHC_6H_5$$

$$2n C_6H_5CHO(C_4H_9)_2 + \frac{1}{4}HCC_6H_4CH=NC_6H_4N\frac{1}{2}n \qquad (eq. 2)$$

It was indicated in a previous report, that m-phenylenediamine and its

dibenzylidene derivative appeared to be better reactants than the analogous para compounds since the meta compounds permitted a longer fusible stage during the polymer syntheses. For this reason both the meta and the para phenylenediamines were evaluated individually and as mixtures. Also, the meta and the para dibenzylidenephenylenediamines were reacted individually to contrast their behaviors.

The polymerization reactions between the acetal and the free amines were performed without the addition of catalysts, whereas, because of the low rate of reaction between the acetal and the dibenzylidenephenylenediamines, small amounts of zinc chloride were used as the Lewis acid catalyst. The amount of zinc chloride used was arbitrarily chosen on the basis of previous studies and does not necessarily represent the ideal quantity. Benzalaniline was used in a number of the reactions studied to determine whether or not it facilitated the formation of black polymers while producing higher-than-theoretical yields.

Some of the objectives of these studies were to produce black polymers which pass through a fusible stage from the reactions investigated and to evaluate their thermal properties and to contrast them with the thermal properties of the yellow polymers, even though the yellow polymers are of the infusible, brick-dust type.

It was also necessary in these exploratory studies to select arbitrarily the reaction conditions for the polymerization. Previous studies have shown that the polycondensation reaction involving exchange reactions in the synthesis of polymeric Schiff bases is far from complete, unless the temperature of condensation exceeds 400°C; in fact, it is not truly completed until the temperature of condensation exceeds 600°C. This was evidenced by the continued elimination of benzalaniline when the polymeric

Schiff bases synthesized by the Bis-Schiff base exchange reactions were heated up to 1200°C in nitrogen in a thermogravimetric apparatus; these same preheated polymers, when reheated to 1200°C in nitrogen, showed minor weight losses.

For the studies in this report, it was decided to prepare all the polymers under the identical temperature conditions of condensation up to 320°C under an arbitrary time and pressure schedule which would be maintained uniformly for all the polymerizations whenever feasible. The polymers prepared up to a condensation temperature of 320°C would then be isolated and divided into portions to be postheated to 425°C and 600°C. A temperature of 650-700°C would have been preferable to 600°C as the selected second highest temperature for postheating but this was unfeasible because these temperatures are beyond the melting point of the aluminum block (623°C) used as the metal-heating apparatus and the operating conditions of the heating mantle surrounding the aluminum block.

It was considered advisable also to complete the condensation at temperatures in excess of 600°C and preferably to the region of 1000°C or higher. This was accomplished by heating small samples of the order of 10 mg. of the polymer directly in the thermogravimetric apparatus.

It was realized that in utilizing an arbitrarily chosen schedule of temperature, time, and pressure that the ultimate yields would not necessarily be the highest or the best attainable, since, if the polycondensation is not complete when the pressure over the condensation mass is reduced, reagents and oligomer may be lost reducing ultimate yields. However, in condensations which proceed by elimination of simple molecules by chainend coupling, the ultimate polymer obtained, even at reduced yields, can be considered as sufficiently typical for evaluation of thermal properties,

if condensation reaction is continued far enough.

It is also a purpose of this study to evaluate the thermal properties of the polymers by thermogravimetric methods in atmospheres of nitrogen and air.

II. Polymerization Reactions.

A. General Experimental Technique.

In all of the polymerization reactions included in this study, the same experimental set-up was used. Reactants were combined in a 50 ml. round-bottomed reaction flask. The reaction flask was then equipped with a thermometer supported by a Teflon adapter and with a simple distilling heat fitted with a thermometer, a condenser, an adapter, and a receiver. All joints were ground glass and standard taper. The reaction flask was heated by means of an electric mantle; the receiver was submerged in a solid carbon dioxide-acetone trap. The adapter had a side arm to facilitate attachment to a vacuum line during part of the reaction.

The monomers used in these reactions were prepared by the procedures given in a previous report. $^{\mbox{\scriptsize l}}$

With several exceptions as indicated below, the following reaction schedule was used for all polymerizations:

- 1.5 hours at 100-130 °C at atmospheric pressure
- 1.0 hours at 130-150°C at atmospheric pressure
- 17.0 hours at 150-230°C at atmospheric pressure
- 23.0 hours at 230-320°C under reduced pressure in the range

of 0.6 to 1.2 mm Hg.

B. Individual Reactions of Xylylidenetetra-n-butyl Ether (XTBE) with Phenylenediamines (PDA) and Their Derivatives.

1. Experimental.

- a. With the Phenylenediamines (PDA).
- i. Reactions of Xylylidenetetra-n-butyl Ether (XTBE) with m-Phenylenediamine (MPDA).

a) (DA-37-12) in Benzalaniline (BA).

A mixture of 4.512 g. (0.0139 M) of xylylidenetetra-n-butyl ether (XTBE), 1.495 g. (0.0144 M) m-phenylenediamine (MPDA), and 5.019 g. benzalaniline (BA) was reacted. Conditions of raction and results are given in Table 1. The yield of black fused polymer, which was medium brown after being ground, was 4.75 g. (166% yield).

b) (DA-37-13) Without BA.

A mixture of 4.425 g. (0.0137 M) of XTBE and 1.410 g. (0.0136 M) of MPDA were reacted. The observations are given in Table 1. The yield of black fused polymer, which was dark-brown after being ground, was 2.33 g. (106% yield).

ii. Reaction of XTBE with Mixture of m- and p-Phenylenediamine (PDA). a) (DA-37-17) 75 Mole % of MPDA.

A mixture of 3.2223 g. (0.0081 M) of XTBE, 0.631 g. (0.0061 M) of MPDA and 0.2106 g. (0.0020 M) of p-phenylenediamine (PPDA) was reacted. The observations are given in Table 1. The yield of brown fused polymer, which was brown after being ground, was 1.70 g. (102% yield).

b) (DA-37-14) 50 Mole % of MPDA.

A mixture of 5.5321 g. (0.00140 M) of XTBE, 0.7265 g. (0.0070 M) of MPDA and 0.7266 g. (0.0070 M) of PPDA was reacted. The observations are given in Table 1. The yield of black fused polymer, which was brown after being ground, was 2.97 g. (103% yield).

c) (DA-37-18) 25 Mole % of MPDA.

A mixture of 3.2743 g. (0.0083 M) of XTBE, 0.2158 g. (0.0021 M) of MPDA and 0.6474 g. (0.0061 M) of PPDA was reacted. The observations are given in Table 1. The yield of brown-black partially fused polymer, which

Table 1

Observations During Reactions of XTBE with PDA and Derivatives Under Standardized Conditions

Yield % of	Theory 166	106	103	145	103	102		101	125	171
t Hg	1.2	1.2	0.3	0.8	0.8	0.6		0.7	9.0	9.0
23.0 hours at 230-320°C/mm Hg	black solid				brown-black solid		0.43 g. brown-black solid	none	solid dark,	black solid negligible
17.0 hours at 150-230°C/	black solid; some liq.	black solid; some liq.	orange solid none	dark yellow liquid	yellow-brown solid	brown solid	brown solid	none	black solid & liquid 1.30 g., yellow liq.	black solid & liq. 1.14 g. yellow liq.
1.0 hour at 130-150°C/ atm. press.	red-brown liquid 3.61 g. (88%) n-BuOH	red-brown liq. & solid 360 g. (89%) n-BuOH	red-brown liq. & solid 3.62 g. (88%) n-BuOH some sublimation	0 11	sublimed g. (85%)	ow-brown s	111	2.20 g. (90%) n-BuOH	little solid left none	no solid none
1.5 hours at 100-130°C/ atm. press.	orange li none	two layers none	two layers none	yellow paste none	red-brown liquid none	two layers none	two layers	none	tan liq., some solid none	yellow-brown liq. none
	DA-37-12 Appearance Distillate	DA-37-13 Appearance Distillate	DA-37-14 Appearance Distillate	Appearance Distillate	DA-37-16 Appearance Distillate	DA-37-17 Appearance Distillate	DA-37-18 Appearance	DA-37-20	Appearance Distillate	DA-37-22 Appearance Distillate

was chocolate-brown after being ground, was 1.73 g. (101% yield).

iii. Reactions of XTBE with p-Phenylenediamine (PPDA).

a) (DA-37-15) In BA.

A mixture of 3.3079 g. (0.0084 M) of XTBE, 0.8736 g. (0.0084 M) of PPDA and 5.3649 g. of BA was reacted. The observations are given in Table 1. The yield of brown unfused polymer, which was orange-brown after being ground, was 2.51 g. (145% yield).

b) (DA-37-16) Without BA.

A mixture of 3.3606 g. (0.0083 M) of XTBE and 0.8840 g. (0.0085 M) of PPDA was reacted. The observations are given in Table 1. The yield of brown-black partially fused polymer, which was brown after being ground, was 1.80 g. (103% yield).

1) (DA-37-19) With Initial Reflux.

A mixture of 3.3584 g. (0.0085 M) of XTBE and 0.8840 g. (0.0085 M) of PPDA was reacted under the following conditions:

Conditions	Hours	Observations
reflux 120°C/atm.press.	16	yellow solid
130-150°C/atm.press.	1	yellow solid 2.19 g. (87%) n-BuOH
150-230°C/atm. press.	17	dark yellow solid
230-320°C/0.6 mm Hg	23	black solid

The yield of black unfused polymer, which was yellow-brown after being ground, was 1.77 g. (101% yield); Table 2.

2) (DA-37-24) To Obtain Yellow Polymer.

A mixture of 0.6721 g. (0.0017 M) of XTBE and 0.1768 g. (0.0017 M) of PPDA was reacted under the following conditions:

Hours	Observations
1.5	two layers
1.0	some solid sublimation
0.5	dark yellow solid
	1.5

The yield of dull, unfused yellow polymer was 0.385 g. (110% yield); Table 2.

b. With Dibenzylidenephenylenediamines.

i. Reactions of XTBE with Dibenzylidene-m-phenylenediamine (DBMPD).

a) (DA-37-23) In BA.

A mixture of 2.8166 g. (0.0071 M) of XTBE, 2.0077 g. (0.0071 M) DBMPD, 4.6 g. of BA, and 0.1 g. of ZnCl₂ was reacted under the following conditions:

Conditions	Hours	
100-130°C/atm. press.	1.5	brown liq.; some solid reactant left
130-150°C/atm. press.	1.0	no solid left
150-230°C/atm. press.	17.0	black opaque liq., 1.39 g. yellow distillate
230-320°C/0.8 man Hg	47.0	23 hrs., black liq. 47 hrs., black solid 3.8 g. brown, acetone- soluble distillate

The yield of black, shiny polymer, which was brown-black after being ground, was 3.25 g. (223% yield); Table 2.

b) (DA-37-22) Without BA.

A mixture of 2.8116 g. (0.0071 M) of XTBE, 2.0165 g. (0.0071 M) of DBMPD, and 0.1 g. of ZnCl₂ was reacted. The observations are given in Table 1. The yield of black, shiny polymer, which was brown-black after being ground, was 2.50 g. (171% yield).

ii. Reactions of XTBE with Dibenzylidene-p-phenylenediamine (DBPPD). a) (DA-37-21) In BA.

A mixture of 3.3617 g. (0.0085 M) of XTBE, 2.4140 g. (0.0085 M) of DBPPD, 5.2493 g. of BA, and 0.01 g. of ZnCl₂ was reacted under the following conditions:

Conditions	Hours	Observations
100-130°C/atm. press.	1.5	brown liquid; some solid reactant left
130-150°C/atm. press.	1.0	no solid left; all liquid
150-230°C/atm. press.	17.0	black opaque liquid, 0.99 g. yellow distillate
230-320°C/0.8 mm Hg	47.0	23 hrs., black liquid 47 hrs., black solid 6.0 g. brown, acetone- soluble distillate

The yield of black, shiny polymer, which was brown after being ground, was 3.13 g. (179% yield); Table 2.

b) (DA-37-20) Without BA.

A mixture of 3.0807 g. (0.0078 M) of XTBE, 2.2152 g. (0.0078 M) of DBPPD, and 0.09 g. of ZnCl₂ was reacted. The observations are given in Table 1. The yield of black, shiny polymer, which was brown after being ground, was 2.02 g. (125% yield).

Table 2

Observations During Reactions of XTBE
With PDA and Derivatives Under Varied Conditions

Experiment Number	Color of Polymer	Yield, % of Theory
DA-37-19	black, unfused	101
DA-37-21	black, shiny	179
DA-37-23	black, shiny	223
DA-37-24	yellow, brick dust	110

2. General Discussion.

The purpose of these reactions was to obtain polymers which, through thermogravimetric studies, would reveal the influence of varying the starting materials and reaction conditions on the heat resistance of the polymers.

These studies were undertaken to provide a means for distinguishing between the advisability of starting with the free m-diamine or p-diamine, or their corresponding benzylidene derivatives, and whether or not a solvent is required to prepare satisfactory polymers in these reactions.

Earlier work showed that benzalaniline is the most active medium in which to perform this class of polymerizations. Hence this compound was chosen for use as a solvent in the studies. It appears to function not only as a solvent but also as a reagent. The comparison in behavior between the four reagents, namely, the meta and the para phenylenediamines and their corresponding dibenzylidene derivatives was motivated by economic factors. First, the dibenzylidene derivatives require synthesis from the free amine by means of benzaldehyde thereby increasing their cost over the free amine. Secondly, the m-phenylenediamine is relatively inexpensive since it can be prepared easily from low-cost m-dinitrobenzene by catalytic hydrogenation. In contrast, p-phenylenediamine involves more steps in its synthesis and accordingly is higher in cost.

It was observed in these studies that in the absence of solvent mphenylenediamine (DA-37-13) reacted with xylylidenetetra-n-butyl ether more
smoothly, producing homogeneous liquid melts and intermediate fusible polymers for longer periods of time, than the p-phenylenediamine (DA-37-16).

The p-phenylenediamine reacted more rapidly than its meta analogue causing
earlier precipitation of lower molecular weight polymers with the result
that sublimation of reactants occurred later in the process. In fact, in

every other case where p-phenylenediamine was used in admixtures with mphenylenediamine, (DA-37-14, DA-37-17 and DA-37-18), sublimation of reactants
to the upper part of the flask occurred early in the reaction. The presence
of p-phenylenediamine in admixtures with m-phenylenediamine in the range of
75-25 to 25-75 mole per cent also cause premature precipitation of polymer
which appeared as a solid dispersed in the liquid which persisted for many
hours in the reaction. It was also evident in these reactions that the byproducts were more readily removed in the reactions using m-phenylenediamine
than in those in which p-phenylenediamine was a reactant.

The exchange reactions of xylylidenetetra-n-butyl ether with the dibenzylidenephenylenediamines are much slower than the free amines and necessitate the use of a catalyst. The difference in behavior between the m-dibenzylidenephenylenediamine (DA-37-22) and the p-dibenzylidenephenylenediamine (DA-37-20) was not as marked as it was between their parent diamines. However, there were notable differences between the two compounds in that with the meta derivative the viscous melt persisted for a longer period of time, and that the by-product elimination was more complete as evidenced by the yield of 125% for the meta and 171% for the para derivatives. In terms of overall behavior during polymer syntheses the meta derivative is preferred over the para derivative.

Since at 320°C, the condensation polymerization is <u>far</u> from complete, the yields of polymers, compared to 100% theoretical yield calculation on a \overline{DP}_n of ∞ , are obviously not ultimate yields and all of them should be greater than 100%, especially in the cases where benzalaniline is used as a solvent. In every case where BA was used as a solvent, (DA-37-12, DA-37-15, DA-37-21 and DA-37-23), the yield was much higher than theoretical, confirming previous studies 1-3 that this compound is a coreactant as well

as a solvent.

In the reaction of XTBE with the free amines, (DA-37-13, DA-37-14, DA-37-16, DA-37-17, and DA-37-18), the yields obtained by condensation up to 320°C were in the vicinity of 100% of theory varying from 101% to 106%; these values should be higher, of the order of 110% or higher. The low yields at this stage of the reaction is attributed to incomplete reaction and loss of XTBE under reduced pressure. Low values of this kind were also obtained when the reagents were refluxed (DA-37-19) and when the deliberate synthesis of a yellow polymer (DA-37-24) was achieved. For the present purpose these low yields are not of consequence; whereas for the future there is indicated an area of studies involving the evaluation of other lower alkyl ethers of terephthaldehyde and of Lewis acid catalysts, such as zinc chloride.

III. Postheating of Polymers.

The polymers prepared in this report were condensed to a temperature of 320°C; a temperature at which the polycondensation is incomplete. The polymers thus prepared were then divided into appropriate portions and postheated to temperatures higher than 320°C to increase their molecular weights.

A. Postheating at 425°C and 600°C.

Since a number of polymerizations in the previous reports 1-3 were terminated at a reaction temperature in the range of 400°C to 425°C, a portion of the polymer prepared at 320°C was postheated to approximately 425°C.

In other studies, 3 it was shown that condensation continued to temperatures in the 600°C range with by-product elimination and without substantial changes in the infrared spectra of the polymer. Accordingly, in

these studies another portion of the polymer prepared at 320°C was postheated to 600°C. The designation H425 or H600 is placed at the end of the number of a polymer to indicate that the polymer has been heated at 425°C or at 600°C respectively. For example, DA-37-12-H425 is polymer DA-37-12 after it has been postheated at 425°C.

1. General Experimental Technique.

Polymers were placed in a quartz tube fitted with a side arm and heated by means of a metal heat sink which consisted of a cube of aluminum, three-inches long on an edge. A hole, one inch in diameter, was drilled in the center of one face of the cube to house the quartz tube, and a probe hole was located within one-half inch of the inserted quartz tube. The metal cube was heated by a quartz mantle, custom-made for the cube.

For the 425°C postheating, the temperature was maintained and controlled by a Model 1422-071 Temperature Controller from Cole-Parmer Instrument and Equipment Company. For the 600°C postheating, the temperature was controlled by a Variac and the temperature determined by a thermocouple.

The sample was placed in a reaction tube equipped with a nitrogen bleeder supported by a Teflon adapter, a condenser, an adapter with side arm for evacuation, and a receiver which was submerged in a solid carbon dioxide-acetone trap. All joints were ground glass and standard taper.

Samples were weighed into the reaction tube, the other glassware was attached, and the tube placed into the aluminum cube, which had already reached the desired temperature. The system was evacuated and nitrogen was bled in. After a few minutes in the post heating at 425°C the nitrogen bleeder was sealed off, while in the 600°C postheating the flow of nitrogen was continued through the heating period.

For all of the postheating at 425°C the tubes were left in the aluminum block for forty hours. In the case of the 600°C postheating, the tubes were left in the heating block for twenty minutes.

B. Postheating of Individual Polymers.

1. Experimental.

Table 3 lists the experimental data for the postheating of the polymers. Table 4 provides a summary of the percentage yields of the polymers before and after postheating. The percentages were calculated by projecting the weight loss over the original yield. In the case of postheating of four of the polymers at 600°C, when the tube containing the original polymer was placed in the heating block, some finely ground polymeric material rose to the top of the reaction tube and this also became black during the course of the postheating. The gram yields given in Table 3 and the percentage yields in Table 4 refer to the total amount of material in the bottom and in the top of the reaction tube for these four polymers. Values for the separate parts of these polymers follows:

Polymer	Weight of Material Found						
rorymer	in bottom of tube	in top of tube					
DA-37-12-H600	0.7188 g.	0.18 70 g.					
DA-37-13-H600	0.2130 g.	0.1954 g.					
DA-37-14-H600	0.3652 g.	0.0418 g.					
DA-37-17-H600	0.2655 g.	0.1918 g.					

Table 3

Data for Postheating

Appearance of H600 Polymer	in bottom: black, steel-like solid in top: black, dull powder	in bottom: black, steel-like solid in top: black, dull powder	in bottom: black, shiny powder in top: black, dull powder	black, dull pellet	black, dull powder	in bottom: black, steel-like solid in top: black, dull powder	black, dull powder	brown-black, dull powder				
Gram Yield of H600 Polymer	0.9058	0.4084	0.4070	0.4251	0.2975	0.4573	0.3092	0.3536				
Weight of Polymer Used, g.	1.3550	0.5473	0.6201	0.9188	0.5517	0.6258	0.6088	0.6408				
Appearance of H425 Polymer	black, slightly shiny powder	black, shiny powder	black, dull powder	black, dull powder	black, dull powder	black, shiny powder	black, dull powder	black, dull powder	black, dull pellet	black, dull pellet	black, dull pellet	black, steel- like solid
Gram Yield of H425 Polymer	1.1547	0.5866	0.5267	0.3393	0.3790	0.4379	0.3875	0.3452	0.3028	0,2861	0.5006	0.2181
Weight of Polymer Used, g.	1.4277	0.6037	0.6663	0.5754	0.5311	0.5174	0.5158	0.4699	0.7714	0.5745	0.5837	0.5370
Original Polymer	DA-37-12	DA-37-13	DA-37-14	DA-37-15	DA-37-16	DA-37-17	DA-37-18	DA-37-19	DA-37-20	DA-37-21	DA-37-22	DA-37-23

Table 4
Summary of Percentage Yields of Polymers

Original Polymer	% Yield of original polymer	% Yield after heating at 425°C	% Yield after heating at 600°C
DA-37-12	166	134.0	111
DA-37-13	106	103.0	79
DA-37-14	103	81.5	67
DA-37-15	145	85.5	67
DA-37-16	103	73.5	55
DA-37-17	103	86.3	74
DA-37-18	101	75.8	51
DA-37-19	101	74.2	56
DA-37-20	125	49.1	
DA-37-21	179	89.0	
DA-37-22	171	146.6	
DA-37-23	223	90.6	

C. Postheating at Temperatures Above 600°C.

It is desirable to evaluate the thermal and other properties of polymers which have been heated to temperatures above 600°C, preferably to temperatures in the vicinity of 1000°C, and means for achieving this heat treatment had to be devised. The apparatus used in heat-treating the polymers to 425°C and 600°C is not suitable for this purpose since the temperature limitation on the heating mantle is set at about 610°C. Accordingly, the du Pont 950 Thermogravimetric Analyzer was adopted for this purpose in the following manner. The sample was placed in the TGA cell of the 950 Analyzer and heated, under nitrogen, to a recorded 1200°C, which is corrected for the non-linearity of the chromel-alumel thermocouples to 1176°C. Then the furnace and the sample was allowed to cool to room

temperature in nitrogen. These samples are designated by the addition of R to the polymer number and are designated as recycles.

D. General Discussion.

A discussion of the effect of postheating on the thermal stability of the polymers is left to the section on thermogravimetric analyses.

Nothing was found in the solid carbon dioxide-acetone trap after any of the postheatings at 425°C, although it is possible that some highly volatile material may have gone through the trap. However, in every case a yellow-brown deposit formed on the upper part of the reaction tube. The yellow-brown deposit is probably due to solvent (benzalaniline) in the cases where solvent was present as well as to the elimination of telogens from the ends of chains with resultant chain lengthening.

IV. Thermogravimetric Analyses.

The du Pont 950 Thermogravimetric Analyzer was used to determine the thermal properties of the polymers under conditions identical to those used in other studies. The heating rate used was 15°C per minute. A number of thermogravimetric measurements were made in nitrogen and in air at a flow rate of one (1) standard liter per minute. Sample weight was standarized at 10 mg. A temperature correction has been made in the measurements for the mon-linearity of the chromel-alumel thermocouples.

A. Experimental.

1. Thermoanalysis in Air.

The polymers listed in Table 5 were subjected to thermogravimetric analysis in air and the thermograms obtained for the respective polymers are given under the appendix number. The data in Table 6 gives the percentage of loss of weight at 400°C, 500°C, 600°C and 700°C in air under the conditions of measurement. The data in Table 7 lists the temperature

for each polymer at which weight loss beging, the temperature at which 20% of the weight has been lost, and the temperature at which the sample had completely combusted in air to zero weight.

Table 5
Polymers Thermoanalyzed in Air

Thermogram Appendix Number	Polymer Number	Thermogram Appendix Number	Polymer Number	
1	DA-37-12	18	DA-37-17-H600	
2	DA-37-12-H425	19	DA-37-18	
3	DA-37-12-H600	20	DA-37-18-H425	
4	DA-37-13	21	DA-37-18-H600	
5	DA-37-13-H425	22	DA-37-19	
6	DA-37-13-H600	23	DA-37-19-H425	
7	DA-37-14	24	DA-37-19-H600	
8	DA-37-14-H425	25	DA-37-20	
9	DA-37-14-H600	26	DA-37-20-H425	
10	DA-37-15	27	DA-37-21	
11	DA-37-15-H425	28	DA-37-21-H425	
12	DA-37-15-H600	29	DA-37-22	
13	DA-37-16	30	DA-37-22-H425	
14	DA-37-16-H425	31	DA-37-23	
15	DA-37-16-H600	32	DA-37-23-H425	
16	DA-37-17	33	DA-37-24	
17	DA-37-17-H425			

Table 6

Percentage Loss of Weight of Polymers at Various Temperatures While Being Heated in Air

Thermogram Appendix Number	Polymer	% Loss at 400°C	% Loss at 500°C	% Loss at 600°C	% Loss at 700°C
	DA 27 10				
1	DA-37-12	2.5	20	86	100
2	DA-37-12-H425	0	1	32	94
3	DA-37-12-H600	0	1	28	97
4	DA-37-13	4	38	88	100
5	DA-37-13-H425	0	1	39	99
6 7	DA-37-13-H600	0	1	21	97
	DA-37-14	1	25	89	100
8	DA-37-14-H425	0	1	42	94
9	DA-37-14-H600	0	8	80	96
10	DA-37-15	20	29	73	100
11	DA-37-15-H425	0	2	48	99
12	DA-37-15-H600	0	27	9 7	100
13	DA-37-16	7	73	100	100
14	DA-37-16-H425	0	2	78	100
15	DA-37-16-H600	0	52	93	100
16	DA-37-17	1	18	62	100
17	DA-37-17-H425	0	12	52	97
18	DA-37-17-H600	0	6	88	100
19	DA-37-18	4	31	9 2	100
20	DA-37-18-H425	0	1	22	100
21	DA-37-18-H600	0	18	100	100
22	DA-37-19	0	67	95	100
23	DA-37-19-H425	0	1	80	100
24	DA-37-19-H600	0	77	93	100
25	DA-37-20	5	56	90	100
26	DA-37-20-H425	0	16	68	100
27	DA-37-21	3	48	91	100
28	DA-37-21-H425	2	43	97	100
29	DA-37-22	4	35	83	100
30	DA-37-22-H425	0	54	93	100
31	DA-37-23	0	9	68	100
32	DA-37-23-H425	0	11	38	9 7
33	DA-37-24	4	60	81	100
	JB- J1 - 24		30	O.T.	100

Table 7

Temperatures at Which Weight Loss Begins, Has Occurred to 20%, is Complete While Being Heated in Air

Polymer	Sample Begins to Lose Weight at °C	Sample Has Lost 20% at °C	Sample Has Disappeared at °C
DA-37-12	320	500	670
DA-37-12-H425	470	583	790
DA-37-12-H600	460	593	725
DA-37-13	350	477	650
DA-37-13-H425	450	575	740
DA-37-13-H600	480	595	742
DA-37-14	370	490	670
DA-37-14-H425	430	580	775
DA-37-14-H600	440	517	800
DA-37-15	105	390	670
DA-37-15-H425	440	580	72 0
DA-37-15-H600	400	498	640
DA-37-16	200	450	600
DA-37-16-H425	480	552	690
DA-37-16-H600	400	480	640
DA-37-17	380	502	710
DA-37-17-H425	395	520	735
DA-37-17-H600	400	515	670
DA-37-18	340	490	660
DA-37-18-H425	515	595	688
DA-37-18-H600	410	500	585
DA-37-19	396	400	720
DA-37-19-H425	485	535	660
DA-37-19-H600	390	455	670
DA-37-20	340	463	650
DA-37-20-H425	370	497	660
DA-37-21	355	482	640
DA-37-21-H425	350	482	630
DA-37-22	350	470	710
DA-37-22-H425	380	460	630
DA-37-23	420	503	700
DA-37-23-H425	400	550	921
DA-37-24	150	455	680

Thermoanalyses in Nitrogen and Recycles in Nitrogen and Air. In Nitrogen.

The thermograms of a number of polymers as prepared at 320°C, or post-heated at 425°C or 600°C were also obtained under a nitrogen atmosphere. The nitrogen used was lamp-grade nitrogen obtained from General Electric Company and used without further purification. Table 8 lists, in the second column, the polymers which, as prepared, were heated in nitrogen, and the appendix numbers of the thermograms in which curve number 1 plots the data obtained under nitrogen to a temperature of 1176°C. Table 9 gives the percentage loss of weight at 400°C, 600°C, 800°C, 1000°C, and 1176°C during this first heating in nitrogen.

b. Recycle in Nitrogen.

The polymers heated in nitrogen to 1176°C were considered as fully condensed and as being heat-treated to temperatures in excess of 600°C. Accordingly the polymer samples, after heating to 1176°C, were recycled to 1176°C in nitrogen. The polymers so treated are listed in column 3 in Table 8 with the appendix designation R to indicate recycle together with the appendix number of the termograms in which curve 2 plots the data obtained. Table 10 lists the percentage loss in weight of the polymers on recycled heating to 1176°C based on the amount of polymer left after the first heating to 1176°C, and on weight of the original sample.

Table 8

Polymers Thermoanalyzed in Nitrogen, Then Recycled in Nitrogen, Followed by Recycle in Air

Thermogram Appendix Number	Run in Nitro- gen, Curve No. 1	Recycled in Nitrogen, Curve No. 2	Recycled in Air Curve No. 3
34	DA-37-12	DA-37-12-R	DA-37-12-R-a
35	DA-3 7- 12-H425	DA-37-12-H425-R	DA-37-12-H425-R-a
36	DA-37-12-H600	DA-37-12-H600-R	DA-37-12-H600-R-a
37	DA-37-13	DA-37-13-R	DA-37-13-R-a
38	DA-37-13-H425	DA-37-13-H425-R	DA-37-13-H425-R-a
39	DA-37-13-H600	DA-37-13-H600-R	DA-37-13-H600-R-a
40	DA-37-14-H600	DA-37-14-H600-R	DA-37-14-H600-R-a
41	DA-37-15	DA-37-15-R	DA-37-15-R-a
42	DA-37-15-H425	DA-37-15-H425-R	DA-37-15-H425-R-a
43	DA-37-15-H600	DA-37-15-H600-R	DA-37-15-H600-R-a
44	DA-37-16	DA-37-16-R	DA-37-16-R-a
45	DA-37-16-H425	DA-37-16-H425-R	DA-37-16-H425-R-a
46	DA-37-16-H600	DA-37-16-H600-R	DA-37-16-H600-R-a
47	DA-37-17-H600	DA-37-17-H600-R	DA-37-17-H600-R-a
48	DA-37-18-H600	DA-37-18-H600-R	DA-37-18-H600-R-a
49	DA-37-19-H600	DA-37-19-H600-R	DA-37-19-H600-R-a
50	DA-37-20-H425	DA-37-20-H425-R	DA-37-20-H425-R-a
51	DA-37-21	DA-37-21-R	DA-37-21-R-a
52	DA-37-22-H425	DA-37-22-H425-R	DA-37-22-H425-R-a
53	DA-37-23-H425	DA-37-23-H425-R	DA-37-23-H425-R-a
54	DA-37-24	DA-37-24-R	DA-37-24-R-a

Table 9

Percentage Loss of Weight of Selected Polymers at Various Temperatures While Being Heated in Nitrogen

Thermogram Appendix Number	Polymer	% Loss at 400°C	% Loss at 600°C	% Loss at 800°C	% Loss at 1000°C	% Loss at 1176°C
34	DA-37-12	0.0	21.0	27.0	30.0	36.0
35	DA-37-12-H425	0.0	3.0	10.5	15.0	22.0
36	DA-37-12-H600	0.0	3.0	9.5	12.0	17.0
37	DA-37-13	1.0	20.0	27.0	30.0	35.0
38	DA-37-13-H425	0.0	2.0	12.0	16.0	22.0
39	DA-37-13-H600	0.0	2.0	7.5	11.0	16.0
40	DA-37-14-H600	0.0	1.0	6.0	10.0	15.0
41	DA-37-15	14.0	43.0	52.0	53.0	56.0
42	DA-37-15-H425	0.0	6.0	18.0	21.0	22.5
43	DA-37-15-H600	0.0	1.0	7.5	11.0	15.0
44	DA-37-16	3.0	39.0	51.0	54.0	56.5
45	DA-37-16-H425	0.0	2.0	18.0	23.0	27.0
46	DA-37-16-H600	0.0	1.0	10.0	15.0	19.0
47	DA-37-17-H600	0.0	2.0	7.0	10.0	15.6
48	DA-37-18-H600	0.0	2.0	9.0	14.0	19.5
49	DA-37-19-H600	1.0	4.0	12.0	17.5	23.0
50	DA-37-20	4.0	10.0	25.0	36.0	45.0
51	DA-37-21	2.0	4.6	20.0	25.0	36.5
52	DA-37-22-H425	0.0	3.0	11.0	14.0	19.0
53	DA-37-23-H425	0.0	3.5	19.0	26.0	32.0
54	DA-37-24	6.0	59.0	68.0	70.0	73.0

Table 10

Loss in Weight of Polymers Postheated to 1176°C

Appendix	Polymer	% Loss in Weight on Basis of		
Number	rotymet	Reheated Sample	Original Sample	
34	DA-37-12-R	3.0	2.0	
35	DA-37-12-H425-R	3.8	3.0	
36	DA-37-12-H600-R	2.3	2.0	
37	DA-37-13-R	3.0	2.0	
38	DA-37-13-H425-R	3.8	3.0	
39	DA-37-13-H600-R	2.3	2.0	
40	DA-37-14-H600-R	2.3	2.0	
41	DA-37-15-R	2.0	1.0	
42	DA-37-15-H425-R	3.8	3.0	
43	DA-37-15-H600-R	2.3	2.0	
44	DA-37-16-R	4,5	2.0	
45	DA-37-16-H425-R	3.0	2.0	
46	DA-37-16-H600-R	5.0	4.0	
47	DA-37-17-H600-R	5.0	4.0	
48	DA-37-18-H600-R	5.0	4.0	
49	DA-37-19-H600-R	6.5	5.0	
51	DA-37-21-R	6.0	4.0	
52	DA-37-22-H425-R	2.5	2.0	
53	DA-37-23-H425-R	1.4	1.0	
54	DA-37-24-R	10.0	2.0	

c. Recycle in Air.

To contrast the thermal behavior in air of polymers heat-treated to 1176°C with those prepared at 320°C, 425°C and 600°C the polymer samples which had been subjected to 1176°C in the thermogravimetric analyzer were recycled in the apparatus in the presence of air. Preliminary experiments showed that there was no substantial difference in thermal behavior in air between those samples which had been processed once to 1176°C (curve 1 in the thermograms) and those which had been recycled under nitrogen (curve 2 in the thermograms). In the interest of economy of time, the thermoanalysis in air of samples heated to 1176°C were performed on samples which were allowed to remain in the thermogravimetric analyzer after the recycle, that is, the second cycle in nitrogen to 1176°C. Table 8 lists, in column 4, the polymers designated by the appended letter a which were recycled in air to 1176°C after two cycles in nitrogen together with the appendix number of the thermogram in which curve 3 plots the data obtained. Table 11 lists the temperature at which loss of weight begins, the temperature at which 20% of the weight has been lost, and the temperature at which the sample completely disappeared while being heated in air after having been heated to 1176°C in nitrogen.

B. General Discussion.

The data in the thermograms shows that:

(1) The polycondensations performed to 320°C are not complete. This is indicated by the loss in weight when these polymers are heated in nitrogen compared to the much lower losses when the polymers are condensed to higher temperatures. This confirms earlier findings 1-3 on syntheses of poly-Schiff bases by other reagents which did not involve xylylidenetetran-butyl ether;

Table 11

Temperatures at Which Weight Loss Begins, Has Occurred to 20%, is Complete While Being Heated in Air After Having Been Heated to 1176°C in Nitrogen

Thermogram Appendix Number	Polymer	Sample Begins to Lose Weight at °C	Sample Has Lost 20% wt. at °C	Sample Has Disappeared at °C
34	DA-37-12	470	600	840
35	DA-37-12-H425	480	620	1000
36	DA-37-12-H600	480	664	1000
37	DA-37-13	520	630	900
38	DA-37-13-H425	500	650	920
39	DA-37-13-H600	540	682	920
40	DA-37-14-H600	530	670	1000
41	DA-37-15	600	695	1000
42	DA-37-15-H425	510	610	800
43	DA-37-15-H600	500	620	840
44	DA-37-16	480	610	740
45	DA-37-16-H425	485	63 8	738
46	DA-37-16-H600	470	600	880
47	DA-37-17-H600	535	670	880
48	DA-37-18-H600	500	620	840
49	DA-37-19-H600	460	580	800
51	DA-37-21	500	610	680
52	DA-37-22-H425	444	580	805
53	DA-37-23-H425	480	620	860
54	DA-37-24	470	540	700

- (2) When condensed to 320°C the heat-resistance of most of the polymers is in the vicinity of 400°C as seen in thermograms of appendix numbers 1, 4, 7, 13, 16, 19, 22, 25, and 29;
- (3) When the condensation is carried to 320°C in those polymerizations in which benzalaniline is used as a solvent, the presence of benzalaniline retards the condensation of xylylidenetetra-n-butyl ether with p-phenylenediamine and reduces the heat resistance of the polymer in air. This is shown in the thermogram of appendix 10 in which the condensation is seen to continue as the temperature is raised, in contrast to the behavior of m-phenylenediamine as shown in thermogram of appendix number 2. However, when the condensation up to 320°C involving benzalaniline is performed in the presence of ZnCl₂ as a catalyst, the degree of condensation is improved and the heat resistance again rests in the 400°C region as found in the thermogram of appendix numbers 27 and 31;
- (4) When the polymers are condensed to a temperature of 425°C, the heat resistance of the polymers in air lies in the 500°C region. The eight polymers shown in thermograms, appendix numbers 2, 5, 8, 11, 14, 20, 23 and 26 are in the 500-550°C range, and the four given in appendix numbers 17, 28, 30 and 32 are in the 475°C to 480°C range. The four polymers of appendix numbers 2, 5, 8 and 20 show heat resistances of 550°C (1022°F) in air;
- (5) When benzalaniline is used as a solvent in those condensations carried to 425°C, the heat resistance of these polymers in air lies in the region of 475-500°C and approaches those of polymers prepared in the absence of benzalaniline as shown in the thermograms of appendix numbers 11, 28, 30 and 32. The lower values do show that either chain-end coupling in benzalaniline telomerized polymers is not completed at 425°C for the

time interval studied, or all of the benzalaniline by-product or solvent has not diffused from the polymer;

(6) When the condensation is performed to a temperature of 600°C a number of effects are noted. First, the twenty-minute heating time at 600°C appears to be insufficient, to cause complete condensation in all cases. To assure the maximum degree of polymerization, it would have been preferable to have taken the polymer previously treated to 425°C rather than those heated to 320°C as the sample for treatment to 600°C. Under the specific conditions of these experiments, there is, in the case of the m-phenylenediamine polymers, little or no difference in the heat resistance in air between the polymers treated to 600°C and the 425°C polymers; both show values of 550°C as shown in thermograms of appendix numbers 3 and 6 contrasted to those of numbers 2 and 5. However, in the case of the p-phenylenediamine polymers there is found a reduced heat resistance in air for polymers heated to 600°C for twenty minutes, compared to those heated to 425°C for twenty-four hours; this reduction is noted also in polymers prepared with mixtures of p-phenylenediamine with m-phenylenediamine. These conclusions are supported by a contrast of the thermograms appendix numbers 9, 12, 15, 18 and 21 with numbers 8, 11, 14, 17 and 20, This reduction is attributable to the poorer reactivity of the para derivatives which is aggrevated by the difference in the time schedule of the experiments. The difference under the experimental conditions used points to the m-phenylenediamine as the preferred reactant; also, since the polymers derived from the m- and p-phenylenediamines can be prepared to have substantially the same heat stability of the order of 550°C in air, it does not appear necessary to evaluate polymers prepared from the pphenylenediamine which have been heated to 600°C in a time schedule which

includes many hours at 425°C. Future studies will be concentrated on the use of m-phenylenediamine and its dibenzylidene derivatives;

- (7) The heat resistance of yellow polymers in air is much less than those of the black polymers, as shown in thermogram appendix number 33;
- (8) When heated in nitrogen, the thermograms indicate for most of the polymers, that polycondensation, and possibly other types of condensations, continue up to a temperature of 1176°C, which corresponds to a recorded temperature of 1200°C corrected for the non-linearity of the chromel-alumel thermocouple. This continued polycondensation is evident in each of curve number 1 of the thermograms of appendix numbers 34 to 53 inclusive. In most of these thermograms, it will be observed in the weight-temperature plots, that little or no loss in weight is found as the samples are heated to a higher temperature until some definite temperature is reached; there a first distinct negative slope occurs until it reaches a second higher temperature where it tends to level out as a second but smaller negative slope becomes evident which continues to the temperature limit of the apparatus, namely, 1176°.

The first negative slope can be attributed to losses of by-products due to continued condensation polymerization and the temperature at which it originates depends, as would be expected, on the previous thermal history of the sample. For example, in those polymers which had been polymerized to a temperature of 325°C, the first negative slope is found approximately in the 500-700°C region; in those postheated to 425°C it is in the 600-750°C region and for those postheated to 600°C, it is found in the 700-900°C region.

The second negative slope may be interpreted from the nature of the plots as originating before the factors responsible for the first negative

slope are completed and it may be approximated that generally it takes origin in the 800-850°C range. Though the losses in this region may be attributed in part to continued condensation which would be expected to be minor, they also may be due to condensations between polymer chains to yield fused ring structures by loss of hydrogen or other by-products.

An insight into the nature of these reactions can be better obtained by analyzing the gases or products collected during the thermogravimetric run, and by differential thermal analysis by reference to the infrared spectra, if interpretable, of the polymers resulting from such treatment. Such studies are contemplated in future research. In any case, the thermograms performed in nitrogen indicate that condensation polymerization should be continued for a sufficient time to some temperature above 600°C, probably to a temperature in the region of 750-800°C. This will require metal heating blocks capable of withstanding these temperatures; for this purpose, copper, MP > 1000°C, is satisfactory. It would also require a new design or structure in the means of heating this copper block and of maintaining the desired temperature thermostatically.

It is interesting to note the appearance of the polymers after heating to 1176°C in nitrogen; the finely powdered samples have the appearance of relatively shiny, very black particles of the original shape, and not of a dusty, powdery product characteristic usually of carbonized polymers. The yellow brick-dust polymer, DA-37-24, appendix number 54, also became black but it retained a brick-dust character;

(9) When any or all of the polymers which have been heated to 1176°C in nitrogen in the thermogravimetric apparatus are recycled under nitrogen there is no evidence of further condensations of any kind as indicated by the substantially linear plot of weight versus temperature in each curve 2

of the thermograms of appendix numbers 34 to 49, and 51 to 54 inclusive. This means that by pretreating the polymers in an inert atmosphere at temperatures in excess of 800°C, for example, in the range of 800-1100°C, a polymer is obtained which shows heat stability in nitrogen or inert atmosphere to 1176°C. At the present time, it is not known whether or not the nitrogen reacts with the polymers at these temperatures. Accordingly it is intended in future research to evaluate helium as the inert atmosphere relative to nitrogen, and to perform some of the thermograms at reduced pressures;

- (10) When any or all of the polymers which have been heated to 1176°C in nitrogen in the thermogravimetric apparatus are recycled in air as shown in each curve 3 of the thermograms of appendix numbers 34 to 49 and 51-53 inclusive, all showed heat stabilities in air in excess of 500°C with a spread in temperature range of 500-600°C. Two polymers, the meta-polymer DA-37-13-H600 (Appendix No. 39) and the para-polymer, DA-37-15-H600 (Appendix No. 41) showed remarkable stability to 600°C (1112°F) in air. This is interpreted to mean that if the polycondensations are complete, as they must be at the temperature used in the preheating, that the meta- and parapolymers are substantially identical and that when benzalaniline is used as a solvent, as it was in DA-37-15-H600, it is substantially eliminated even as telomerized end groups;
- (11) When the polymer is meant for use in air, there is only a difference of about 50°C in the heat stability of a polymer condensed to a temperature in the region of 600°C (or to some slightly higher temperature to be chosen after more studies, for example, 750-800°C) and one condensed to 1176°C. Whereas, if use is intended for the polymers in an inert atmosphere to temperatures in excess of 600°C, the polycondensation should be performed to temperatures of the order of 800°C or higher.

- (12) The yellow brick-dust polymers have lower heat resistance in nitrogen and air than the black polymers, even after postheating in nitrogen twice to 1176°C;
- (13) The polymers prepared from p-xylylidenetetra-n-butyl ether and the m- or p-phenylenediamines or their dibenzylidene derivative appear to be identical, except for end groups, to the polymeric Schiff bases prepared by Schiff base exchange reactions. 1-3

V. Summary and Conclusions.

- 1. Black polymeric Schiff bases which pass through a fusible stage can be made from p-xylylidenetetra-n-butyl ether and either m- or p-phenylenediamine or their dibenzylidene derivates in the absence or presence of benzalaniline as a solvent. Differences between the resulting polymers are not great.
- 2. The synthesis of the Schiff base polymers is smoother with m-phenylenediamine and its dibenzylidene derivative than from p-phenylenediamine and its benzylidene derivative. The cost of m-phenylenediamine is much lower than the para compound and its use is preferred and recommended.
- 3. The polymers prepared from m-phenylenediamine and xylylidenetetran-butyl ether have heat-resistant properties at least as good as those prepared from p-phenylenediamine.
- 4. Polymers condensed to temperatures of 425°C to 600°C show a heat resistance in air of 525-550°C. This temperature range appears to be the region in which combustion of the by-products of condensation begin to burn.
- 5. Polymers condensed at temperatures to 1176°C show heat resistance in air of 600°C (1112°F). This appears to be the temperature

- region in which combustion of the polymer occurs.
- 6. Polymers condensed to a temperature of 1176°C (2026°F) show a heat resistance in nitrogen of about 1176°C (2026°F).
- 7. The experimental work points to other needed areas of study.

VI. Future Research.

- 1. Establish the best overall conditions for the condensation polymerization of p-xylylidenetetra-n-butyl ether with mphenylenediamine within the following reaction parameters:
 - a) without and with ZnCl2 catalysis
 - b) without and with benzalaniline as a solvent
 - c) establish temperature range of reaction
 - d) establish time limits of reaction.
- 2. Compare the behavior of p-xylylidenetetra-n-butyl ether with
 - a) p-xylylidenetetraethyl ether
 - b) the p-xylylidenetetrapropyl ethers.
- 3. Perform kinetic studies to determine rates of reactions on selected polymers obtained under VI.1 and VI.2.
- 4. Perform differential thermal analyses on selected polymers obtained under VI.1 and VI.2.
- 5. Study the postheating to the region of 800°C to 1000°C of polymers prepared to temperatures of about 600°C to determine what changes occur in the polymers, by
 - a) changes in the IR spectra of the polymers
 - b) mass-spectra analyses of by-products of reactions.
- 6. Determine best point in the polymerization at which the fusible polymer should be isolated for conversion to infusible condition

- a) evaluate use of Lewis acid in the process of conversion to infusibility.
- 7. Undertake appropriate physical studies involving the following solid state properties of selected polymers and to correlate these properties by
 - a) semi-conductor measurements as a function of temperature and conformance to Ohm's law.
 - b) electron spin resonance measurements as a function of temperature and relationship to number of free electrons to conductivity.
 - c) Heat capacity measurements as a function of temperature for correlation to conductivity and ESR.

VII. Acknowledgment.

The authors and the University of Notre Dame acknowledge gratefully the financial assistance under NASA Grant NsG339 which made this research possible. Appreciated also is the general guidance and assistance given by Mr. Bernard Achhammer, NASA Headquarters, Washington, D. C. 20546.

Thanks are due to James Crivello for assistance in obtaining the thermogravimetric analyses.

VIII. Glossary.

XTBE
$$p = \frac{n-H_{9}C_{4}O}{n-H_{9}C_{4}O} + C - C_{6}H_{4} - CH + OC_{4}H_{9} - n$$

BA
$$C_6H_5CH=NC_6H_5$$

$$\begin{array}{ll} \mathtt{DBMPD} & \mathtt{m-C_6H_5CH=NC_6H_4N=CHC_6H_5} \end{array}$$

IX. Bibliography.

- 1. G. F. D'Alelio, T. Kurosaki and J. Crivello, "Fundamental Studies on the Synthesis of Heat-Resistant Polymers." Report No. 5, April, 1965, under NASA Grant NsG339.
- G. F. D'Alelio, L. Mallavarapu, T. Huemmer, T. Kurosaki, W. Fessler and J. Crivello, "Fundamental Studies on the Synthesis of Heat-Resistant Polymers." Report No. 4, September 15, 1964, under NASA Grant NsG339.
- 3. G. F. D'Alelio and J. Crivello, "Fundamental Studies on the Synthesis of Heat-Resistant Polymers," The Synthesis and Evaluation of Polymeric Schiff Bases by Bis-Schiff Base Exchange Reactions, Report No. 6, September 15, 1965, under NASA Grant NsG339.

TEMPERATURE*, °C

. APPLY CORRECTION FOF NOM-LINEARITY OF CHROMEL-ALUMEL THERMOCOUPLES

. APPLY CORRECTION FOR NON-LINEARITY OF CHROMEL-ALUMEL THERMOCOUPLES

									MPP	CHGIA	NO. 2	
7-27-65	min.	sec		,								TGA
TE_7-	15	2										OFFICE STORE
DATE	01	ANT										
	ا سز ا	TIME CONSTANT										
RUN NO.	OPERATOR HEATING RAATMATM	ME C					 			<u> </u>		
<u>x</u>	O E G	mg.					 					
		£										
S		0										
Y-AXIS	inc (5 x 2)	NOI										·
	E 2	SUPPRESSION										
	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPF				:/		<u>-</u>				
	o inch	0										
X-AXIS	100 inch	TIME SCALE (ALT.)										
7-X	TEMP. SCALE 100	ALE (·				
	TEMP. S	1E SC										
	TE	=======================================										
Ŋ												
2-H42	,H4											
A-37-1	4 сн]2С ₆ 5	-mg.	-	-								
Д)2C ₆ H, BuO)2(CHC ₆ H,		 									
SAMPLE: DA-37-12-H425	m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ C ₆ H ₅ N=CHC ₆ H ₅	SIZE 10										
S	O 44 B	S			ļ	<u> </u>						

ALTERIA

13-C gH4 TEMP. SCALE 100 °C SCALE 2 mg. hch SHIFT 0 inch TIME SCALE (ALT.) 0 SUPPRESSION 0 mg. TIME CONSTANT 2 structure x2) TIME CONSTANT 2 structure x2) TIME CONSTANT 2 structure x2)	·	ettador son son internacional			~					Ap	pendix	No. 3	
TEMP. SCALE 100 0° SCALE 2 mg. HEATING RATE SCALE 100 0° SCALE 2 mg. HEATING RATE SCALE (SCALE SETTING X 2) TIME SCALE (ALT.) 0. SUPPRESSION 0 mg. TIME CONSTAN TIME CONST	-27-65	min.	sec.										DTGA
TEMP. SCALE 100 0C SCALE 2 mg. HEATING RATE SCALE 100 0C SCALE 100 100 Mg. HEATING RATE SHIFT 0 mg. TIME SCALE (ALT.) 0 SUPPRESSION 0 mg. TIME CONSTAN Mg. Mg.	ATE_7	T0 15 fr	2										95(
TEMP. SCALE 100 °C SCALE 2 mg. SHIFT 0 inch iscale SETTING x 2) TIME SCALE (ALT.) 0 SUPPRESSION 0 mg.	0	"	TANT										
TEMP. SCALE 100 °C SCALE 2 mg. SHIFT 0 inch iscale SETTING x 2) TIME SCALE (ALT.) 0 SUPPRESSION 0 mg.	NO.	RATOR TING R	CONS										
TEMP. SCALE 100 °C SCALE 2 mg. inch scale SHIFT 0 inch scale (SCALE SETTING X 2) TIME SCALE (ALT.) 0 SUPPRESSION 0 SUPPRESSION 0	RUN	OPE! HEAT											
TEMP. SCALE 100 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0			mg.										
TEMP. SCALE 100 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0			0										
TEMP. SCALE 100 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0	Y-AXIS	mg inch	NOI				 	-					
TEMP. SCALE 100 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0		E 2	RESS										
TEMP. SCALE 100 SHIFT 0 inch TIME SCALE (ALT.)		SCAL (SCALI	SUPF										
TEMP. SCALE 100 SHIFT 0 inch TIME SCALE (ALT.)		U U											
TEMP. SCALE 1 SHIFT 0 TIME SCALE (ALT		ع ا											
	K-AXIS	LE 10	E (ALT										
		SCA	SCAL										
2A-37-12-н600 1 ₄ 2CH] ₂ C ₆ H ₄ 1 ₅ — mg.		TEMF	TIME	-		1 10 10 10							
2A-37-12-H600													
14, 14, 15, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	12-н60(,H4											
)A-37-]	14 усн Ј2С ₍ ^{[5}	mg.			-,							
PLE: 1	LE: 1	m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ Ci C ₆ H ₅ N≕CHC ₆ H ₅	10		1								
SAMPLE: m-(H ₂ N) ₂ (p-[(n-Bu) C ₆ H ₅ N=CH(SIZE 10	SAME	m- (H ₂ p-[(r C ₆ H ₅ N	SIZE										

WINDER | INSTRUMENT PRODUCTS DIVISION

WINITED IN THE POST OFFICE AND ALL AND

TEMPERATURE*, °C

. APPLY CORRECTION FOR NON-LINEARITY OF CHROMEL-ALUMEL THERMOCOUPLES

RUN NO. DATE 7-27-65	OPERATOR TO HEATING RATE 15 °C min.	TIME CONSTANT 2 sec						© PSV 950TGA
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION 0 mg.						
X-AXIS	TEMP. SCALE 100 °C inch	TIME SCALE (ALT.) 0						
SAMPLE: DA-37-13-H425	n-(H ₂) ₂ C ₆ H ₄ p-[(n0) ₂ CH] ₂ C ₆ H ₄ no solvent	SIZE10mg.						

CHIPLING INSTRUMENT PRODUCTS DIVISION

TEMPERATURE*, °C

			 	,	,	 ,	,	 	,	
DATE_7-27-65	min.	sec								OTGA
TE 7	15	2								
0	TO ATE	TANT								—
50.	ATOR NG RA	TIME CONSTANT								
RUN NO.	OPER. HEATI	TIME								
		mg.			-			,		/
		0								
Y-AXIS	mg. inch x 2)	NC		:						
\	2 SETTING	ESSIC								· · · · · · · · · · · · · · · · · · ·
	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION								
										
	°C inch	0				 				
X-AXIS	100 inch	ALT.)								
X-7	TEMP. SCALE 100 SHIFT 0 inc	TIME SCALE (AL)								· · · · · · · · · · · · · · · · · · ·
	TEMP. S SHIFT	ME SC						-		
	TE	F								
900										
'-13-II	C6H4									
DA-37	6 ^H 4) ₂ CH] ₂ t	mg.		:				*		
IPLE:	(bottom) m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ no solvent	SIZE 10								
SAN) - u	SIZE								

Serented in school of the series

WEIGHT, mg.

9 C min.	SA A
DATE 7-25-65 10 115 °C min. T 2 sec	ADECTO 950TGA
	36
ATT 15 2	NO SEE
TE afr.	Θ.
ATI B SITA	
NUN NO. DOPERATOR TO HEATING RATE ATM. air TIME CONSTANT	
ATM.	
OPER ATM.	
- GB	
SCALE 2 mg. inch (SCALE SETTING X 2) SUPPRESSION	
SCALE 2 ii (SCALE SETTING X 2 SUPPRESSION	
2 KE SS: 1	
E SE LE	
CAI	
8 8 8	
0 in the second of the second	
00 ii C:	
X-AXIS TEMP. SCALE 100 SHIFT 0 in TIME SCALE (ALT.)	
X-P O O O O O O O O O O O O O O O O O O O	
CAL CAL	
F. S.	
SHIFT TIME S	
- ν -	
7 _H 2	
14 25C,C	
A-37-] - (H ₂ N) - (H ₂ H) - (H ₂ H) - mg.	
органия (1 - (1 - (1 - (1 - (1 - (1 - (1 - (1	
PLE	
SAMPLE: DA-37-14 50 mole % m-(H ₂ N) ₂ C ₆ H ₄ 50 mole % p-(H ₂ H) ₂ C ₆ H ₄ no solvent SIZE 10 mg.	
N N N N N N N	

VUPULL | INSTRUMENT PRODUCTS DISTRICT

							App	endix	No. 8	
-27-65	©C min.	sec								SOTGA
DATE 7-27-65	T0 15	4T 2								©™ 950TGA
0.	OPERATOR HEATING RATE	TIME CONSTANT								
RUN NO.	OPERATOR HEATING RAATM	TIME C								
		mg.								
S	р і - ;	0								
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	SION								
	SCALE	SUPPRESSION								
	SC/	SU								
	°C inch	0								
(IS	130 inch	LT.)								
X-AXIS	CALE 0	ALE (A								
	TEMP. SCALE 10 SHIFT 0 II	TIME SCALE (ALT.)								
	TE 1S	Ē								
1425	эн ^с эн ^с									
37-14-1	${}^{(2)}_{2}$ ${}^{(2)}_{2}$ ${}^{(2)}_{2}$ ${}^{(2)}_{2}$ ${}^{(2)}_{3}$ ${}^{(2)}_{4}$ ${}^{(3)}_{4}$	Ġ								
SAMPLE: DA-37-14-H425	50 mole % m-(H ₂ H) ₂ C ₆ H ₄ 50 mole % p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄	ent 10mg.								
AMPLE	O mole O mole -[(n-Bu	no solvent								
Š	ν <u>ν</u> σ	n IS								

CUTUL INDIRECTION OF COLORS OF THE CONTRACTOR

U
0
*
ш
꼰
ĭ
⋖
22
PE
Ξ

. APPLY CORRECTION FOR NON-LINEARITY OF CHROMEL-ALUMEL THERMOCOUPLES

OPERATOR AIT ATM. air TIME CONSTANT	TO SOLEA
OPERATOR———————————————————————————————————	26 AND 95
OPERATOR———————————————————————————————————	
9 B	
Y-AXIS mg. inch age x 2)	
KESSIC 14.	
SCALE 2 mg. inch (SCALE SETTING X 2) SUPPRESSION	
XIS 100 100 100 100 100 100 100 100 100 10	
TEMP. SCALE 100 SHIFT 0 inc	
SHIFT SC. TIME SC.	
8	
14-H6() 2C ₆ H ₄ 9H ₄	
DA-37- m-(H2N P-(H2N mg.	i
SAMPLE: DA-37-14-H600 50 mole % m-(H2N)2C ₆ H ₄ 50 mole % p-(H2N)2C ₆ H ₄ no solvent SIZE 10 mg.	
SAMPLE: DA-37-14-H600 50 mole % m-(H2N)2C ₆ H ₄ 50 mole % p-(H2N)2C ₆ H ₄ no solvent SIZE 10 mg.	

,	1 1 1 1			1	1	γ	Τ						γ	
DATE 7-22-65	min.	sec.												
E7-2	2	2												
DAT	TO 15	5												
	RRATE	STA							ļ					
NO.	ATO ING I	CON				:		! !						
RUN NO.	OPERATORHEATING RATE	TIME CONSTANT								•				
		mg.						<u> </u>						-
		0												J
Y-AXIS	mg inch	N												
;	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION												
	ALE.	PPRE												
	SC/	SUI												
	ا													
	o inch	0				/								
IS	00 inch	.T.)_												
X-AXIS	TEMP. SCALE 100 SHIFT 0 in	TIME SCALE (ALT.)												
	SC,	CAL												
	TEMP.	MES			/				<u> </u>					
	F S	F			/									
	4													
7-15	12C6H	G												
DA-3	6 ^H 4) ₂ CH] 36 ^H 5	mg.												
'LE:	N) 2C - BuO N=CH(10												
SAMPLE: DA-37-15	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ C ₆ H ₅ -N=CHC ₆ H ₅	SIZE												
		0,	L	l		<u></u>	<u> </u>	<u> </u>		L	L	<u> </u>	<u></u>	

TEMPERATURE*, °C

WEIGHT, mg.

ALEMIN MINNESON B DELEMENT

TEMPERATURE*, °C

TEMPERATURE*, °C

* APPLY CORRECTION FOR NON-LINEARITY OF CHROMEL-ALUMEL THERMOCOUPLES

65	ain.	sec.	I				[gA GA
DATE 7-22-65		se									ALLEN 950TGA
ATE 7	0 15	2									
۵	\sim 1 \simeq 1	ANT									
	OPERATOR1 HEATING RATE ATMa1	TIME CONSTANT				•					ᅦ
RUN NO.	OPERATOR HEATING RA	E CC									\dashv
P. C.	OPER, HEATI ATM.										
		-mg.								1	
											\dashv
<u>S</u>	g C	0				 				-	\dashv
Y-AXIS	in in 15 (5 X 2)	NOI									
	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION									
	SCALE_2	UPP			· · · · · · · · · · · · · · · · · · ·			 .,			
	N 2	S							 	,	\dashv
	o inch										
	1	0									
X-AXIS	100 inch	TIME SCALE (ALT.)		1							
X-A	ALE 0	LE (
	. SC	SCA									
	TEMP. SCALE 100 SHIFT 0 ii	TIME									
9	,H4										
SAMPLE: DA-37-16	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ no solvent	-ag.									
DA.	C ₆ H ₄ 0) ₂ Cl nt									-	\dashv
IPLE	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ Cl no solvent	SIZE 10		1						-	_
≥	ت ا وا	171									

WEIGHT, mg.

,													enaix	.,	
DATE 7-27-65	O D E		sec.												GA
7-27			S		ļ										DIN 950TGA
Ш	15		7						i i			·			6
DAT	TO	١,								`					<u> </u>
	TE	н	AN												
	ZR_ RA	air	VS1												
9	ATC		00	<u> </u>											
RUN NO.	OPERATOR HEATING RATE	ATM.	TIME CONSTANT												
<u>R</u>	ōĦ		1												
			mg.												
				<u> </u>		<u> </u>									/
			o												
IS	SCALE 2 mg.														
Y-AXIS	E .5 ?	, Y 2)	N C												
>	2	9	551												
	ш	ָ ו ו ו	SUPPRESSION							[
	CAL	CALE	JPP		7										
	N Z	2 (S												
	1								- " " " "						
	o inch		o				· · · · · · · · · · · · · · · · · · ·								
		_													
15	100	inch	(.T.									· 			
X-AXIS	тi		₹								•				
×	CAL		ALE					b.							
	Š.	_ (SC								,				
	TEMP. SCALE 100	SHIFT	TIME SCALE (ALT.)												
	F :	i R													
25															
-H42	<†										:				
-16	'н ⁹ ၁														
1-37	, Ж]2		mg.												
DA	2,6H2 2)2C	ب													
L E	N) ₂ (N) _{-Bu} (1 ve	2												
SAMPLE: DA-37-16-H425	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄	no sorvent	SIZE TO												
S /	<u> </u>	<u> </u>	ภ												

GULIND | WIGHTON DILANGE PRODUCTS DIVISION

PLY CORRECTION FOR NON-LINEARITY OF CHROMEL-ALUMEL THERMO

TEMPERATURE*, °C

-65	0	min.	sec.								ГGА
DATE 8-4-65			2 8							,	 OFFIN 950TGA
DAT	T0 15	air	<u></u>								- (S)
	R AATE	4 6	STAN								
NO.	OPERATOR		CON								
RUN NO.	OPE	ATM.	TIME CONSTANT								
			mg.					 			
			0		-					- 1	
Y-AXIS	B.	1) (2)									
Y-A	7	inch (SCALE SETTING X 2)	SUPPRESSION								
	Ш	LE SET	PRES								
	SCA	(sca	SUF			-		 			
	-ان	u) U									
			0		/						
AXIS	100	inch	TIME SCALE (ALT.)						- T		
X-AXI	TEMP. SCALE	0	ALE (·					
	MP. S	SHIFT	IE SC								
	里	SH	TIN								
0											
09н-9	н,	t									
-37-1	H],C ₆]	0 7	-mg.								
SAMPLE: DA-37-16-H600	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO),CH],C ₆ H,	ent	1								
MPLE	(H_2N) [$(n-B)$	no solvent	SIZE 10	1							
SA	<u>.</u> .	ou 	SI								

DA	OPERATOR TO HEATING RATE 15 °C min. ATM.	TIME CONSTANT 2 sec						AD105€ ∰
Y-AXIS RI	SCALE 2 mg. OI inch inch (SCALE SETTING X 2) AT	.mg.						
X-AXIS	TEMP. SCALE 100 °C inch	TIME SCALE (ALT.) 0						
SAMPLE: DA-37-17	25 mole % p-(H ₂ N) ₂ C ₆ H ₄ 75 mole % m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄	SIZE10mg.						

OF DATE OF THE PROPERTY PROPUCTS DIVISION

7-27-65	S min.	sec.							OTGA
DATE 7	T0 15	7							950TGA
Ď,	a j	TANT							
0.	OPERATOR HEATING RATE ATM.	TIME CONSTANT							
RUN NO.	OPERATOR HEATING RA	TIME (
		ge.							
		0							
Y-AXIS	mg. inch (2)	Z							
\ '	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION							
	CALE.	UPPRI							
	S)	S							
	°C inch	0	-/	/					
S	00 inch					·			
X-AXIS	ALE 10	E (AL						·	
	SC	TIME SCALE (ALT							
,	TEMP. SHIFT_	TIME						-	
1									
-н425	26H4 26H4 4								
.37-17	(H ₂ N) ₂ (H ₂ N) ₂ (1) ₂ C ₆ H,	-mg.							
DA-	% p-(% m-(% m-(% m-(% m-(% m-(% m-(% m-(% m	1 1						·	
SAMPLE: DA-37-17-H425	25 mole % p-(H ₂ N) ₂ C ₆ H ₄ 75 mole % m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ no solvent	7E 1	1.6			·			
SA	25 75 P-	SIZE							

OUDDING HETEUMENT PRODUCTS DIVISION

	OPERATOR TO C. LEATING RATE 15 °C	air	TIME CONSTANT 2 sec.						
Y-AXIS	SCALE 2 mg.	(SCALE SETTING X 2)	SUPPRESSION 0 mg.						
X-AXIS	TEMP. SCALE 100 °C		TIME SCALE (ALT.) 0						
SAMPLE: DA-37-17-H600	25 mole % m- $(H_2N)_2C_6H_4$ 75 mole % p- $(H_2N)_2C_6H_4$	p-[(n-BuO)2CH]2C6H4	SIZE_8_mg.						

I I DU PONT OF ALBOMS & CO (MC)
INSTRUMENT PRODUCTS DIVISION
B. LENS FOR ALBOMS

RUN NO. DATE 7-25-65	OPERATOR TO HEATING RATE 15 °C	ATMair	TIME CONSTANT 2 sec						(A) DAY 950TGA	7
Y-AXIS	SCALE 2 mg. inch	(SCALE SETTING X 2)	SUPPRESSION 0 mg.							
X-AXIS	SCALE 100 °C inch	SHIFT 0 inch	TIME SCALE (ALT.) 0							
SAMPLE:DA-37-18	25 mole % m-(H ₂ N) ₂ C ₆ H ₄ 75 mole % p-(H ₂ N) ₂ C ₆ H ₄	p-[(n-BuO)2CHJ2C6H4 no solvent	SIZE10mg.							

INSTRUMENT PRODUCTS DIVISION

									endix	NO. &O	
27-65	°C min.	sec.									OTGA
DATE 7-27-65	TO 15 air	2				:					950TGA
/q		TANT									
0.	OPERATOR HEATING RATE ATM.	TIME CONSTANT									
RUN NO.	OPERATOR HEATING RAATM.	TIME (
		- mg.						-			
		0									/
(IS	ng.	i				124					
Y-AXIS	1 ir	NOI	·	سرر	 - Landau de la constante de la			• .			
	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION									
	SCAL (SCAL	SUPI									
	OO OC inch	0									
X-AXIS		TIME SCALE (ALT.)					 		,		
×	TEMP. SCALE SHIFT 0	ALE							 		
	AP. S	E SC							<u>.</u>		
	TEMP.	TIM									
		i									
8-H42	2 ^C 6 ^H 4 2 ^C 6 ^H 4 ^H 4	·									
1-37-1	-(H ₂ N) -(H ₂ N) :H] ₂ C ₆	-mg-						150			
E: D!	е% m. е% р. Вио) 20		1								
SAMPLE: DA-37-18-H425	25 mole % m-(H ₂ N) ₂ C ₆ H ₄ 75 mole % p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄	SIZE_10									

INSTRUMENT PRODUCTS DIVISION

RUN NO. DATE 8-4-65	OPERATOR TO HEATING RATE 15 °C ATM. air	TIME CONSTANT 2 sec						©IFIN 950TGA
Y-AXIS RI	SCALE 2 mg. HE inch (SCALE SETTING X 2) AT	SUPPRESSION 0 mg. Till						
X-AXIS	TEMP. SCALE 100 °C inch	TIME SCALE (ALT.) 0						
SAMPLE: DA-37-18-11600	25 mole % m-(H2K)2C ₆ H ₄ 75 mole % p-(H2K)2C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ no solvent	SIZE_ ¹⁰ mg.						

COLDINGTON PRODUCTS DIVISION

TEMPERATURE*, °C

DATE 7-25-65	°C Min.		sec.								OTCA
TE 7-	T0 15		7								VO.I.O名6 @间》
D/		air	ANT								— <i></i> ਾਂਝੋਂ
0.	OPERATOR HEATING RATE		IIME CONSTANT								<u>;</u>
RUN NO.	OPERATOR HEATING RA	ATM.	IME C								
DE	O H	≪ 1	mg.								*
										Ý	
(IS	ng.	,	0							/′	
Y-AXIS	SCALE 2 mg. inch		SUPPRESSION								
	E		PRES								
	SCALE		SUF								
	°C inch	·	0				The second secon				
	-	יים . יים דיים									
X-AXIS	E 10		(ALT.								
×	TEMP. SCALE 100		TIME SCALE (ALT.)								***************************************
	EMP.	SHIFL	IMES								
	- (-								•
7-19	2 ^C 6 ^H 4		<u>.</u>								
SAMPLE: DA-37-19	$p-(H_2N)_2C_6H_4$ $p-[(n-Bu0)_2CH]_2C_6H_4$ no solvent	reflux	mg.						•		
IPLE:	H ₂ N) ₂ C (n-BuC solven	tial 1	27								•
SAN	p - (l p - (l no s	ini	SIZE								

CONTROL OF A CHARGES A CO (MC)
INSTRUMENT PRODUCTS DIVISION

DATE 7-27-65	nin.	sec.									OTGA
ATE 7	TOair	2									ON 950TGA
/Q		LANT									·ভ
10.	OPERATOR HEATING RATE ATM.	TIME CONSTANT									
RUN NO.	OPERATOR HEATING RAATM.	TIME								·	
		B									
		0									
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	NC									
>	2 SETTING	RESSI									
	SCALE	SUPPRESSION									
	100 °C inch inch	0							, , , , ,		
X-AXIS		(ALT.)									
×	TEMP. SCALE	TIME SCALE (ALT.)									
	TEMP. SCA	rime s				·					
							··				
-H425	⟨ 1										
-37-19	н]2С ₆ н, u x	-mg.			·						
E: DA	(H ₂ N) ₂ C ₆ H ₄ (n-BuO) ₂ Cl solvent, tial reflu	10									
SAMPLE: DA-37-19-H425	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ no solvent, initial reflux	SIZE				. ;	•				
0)		01									

THE THE PRODUCTS DIVISION

10. DATE8-4-65	OPERATOR TO HEATING RATE 15 °C ATM. air	TIME CONSTANT 2 sec						@∭@ 950TGA
RUN NO.	OPER. HEATI							
		mg.						
Y-AXIS	mg. inch x 2)	0 N						
- À	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION						
	SCALE_	SUPP				·	25	
	o inch	0						
XIS	100 inch	LT.)	1					
X-AXIS	TEMP. SCALE 100 SHIFT 0 inc	TIME SCALE (ALT.)						
	TEMP. S	ME SC						
	<u> </u>	Ŧ						
-неоо	<⁴				- · - · · · · · · · · · · · · · · · · ·			
-37-19	н]2С ₆ н, ux	-mg.						
SAMPLE: DA-37-19-H600	$P-(H_2N)_2C_6H_4$ $P-[(n-BuO)_2CH]_2C_6H_4$ no solvent initial reflux	10						
SAME	p-(H ₂ N) ₂ C ₆ p-[(n-BuO), no solvent initial re	SIZE						

					1		·		r				T		
8-5-65		ပ	min.	sec.											TGA
													 		950
DATE		15		2											© 950TGA
DA	TO		ы												
		ATE	air	TAP											
	OR	G R		SNC											
S	RAI	NI		Ö									 		
RUN NO.	OPERATOR	HEATING RATE	ATM.	TIME CONSTANT											
-		_		g g											
				3										1	
S		عاد	:	0									 		
Y-AXIS		ing.	(SCALE SETTING X 2)	Z											
>			ING	SIO											
		Z	SETI	SUPPRESSION											
		SCALE	CALE	JPP											
		š	S)	જ											
		1													
		ب او	5	0			/						 		
	9	100	inch				Y								
(IS	}	=	. <u>=</u>	(LT.)		/		<u> </u>							
X-AXIS		Щ		€											
		SCA	0	SAL											
		<u>-</u>	F	E S(<u> </u>						,		 		
		TEMP. SCALE	SHIFT	TIME SCALE (ALT											
	!			<u> </u>					<u> </u>				 		
												 			
7-20	H,	,6H4	· 보												
DA-37-20)2C	p-[(n-Bu0)2CH]2C6H4	lver	-mg											
	H=N) ₂ c	0 8 0			-							 <u> </u>		
E E	H5-(-Bu('n u(10											
SAMPLE:	၁	_[_n	1C12	SIZE									 		
S	<u> </u>	<u> </u>	2	S						<u> </u>					

(INDICE IN THE PRODUCTS DIVISION

								**PP			
5-65	o ië.	sec.	i								OTGA
DATE 8-5-65	15	2									© 950TGA
DA	5	air							-		
		ATM. air TIME CONSTANT									
RUN NO.	OPERATOR HEATING RA	M. TE CO									
R	O H										
		mg.		·						######################################	
		0									
Y-AXIS	mg. inch	Z									
γ-	SCALE 0 mg.	SUPPRESSION									
	SCALE	JPPRI				f					
)S	<u> </u>									
	°C inch	0									
	-	ج ا									
X-AXIS	E 10	(AL)									
×	SCAL	CALE	·								
	EMP.	SHIF I.									
	F (⊼ F						····			
25			ļ								
20-н4	н4 6Н4										
A-37-	N)2C6 CH]2C lvent	Ba									
SAMPLE: DA-37-20-H425	p-(C ₆ H ₅ -CH=N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ ZnCl ₂ ,no solvent	10									
AMPL	-(C ₆ H -[(n- nC ₁ 2,	SIZE									
S	D D N	<u> </u>			<u> </u>						

INSTRUMENT PRODUCTS DIVISION

TEMP. SCALE 100 °C SCALE 2 inch HEATING RATE SCALE (ALT.) OPERATOR STIME SCALE (ALT.) OPERATOR SUPPRESSION O mg TIME CONSTANT OPERATOR OPERAT											
TEMP. SCALE_100	-5-65	©C min.									OTGA
TEMP. SCALE_100	TE 8-	15	2								OFFICE OFFICE A
TEMP. SCALE 100 °C SCALE 2 mg. SHIFT 0 inch (scale setting x 2) TIME SCALE (ALT.) 0 SUPPRESSION 0 mg.	DA	11	ANT		·						
TEMP. SCALE 100 °C SCALE 2 mg. SHIFT 0 inch iscale SETTING X 2) TIME SCALE (ALT.) 0 SUPPRESSION 0 mg.	0.	ATOR_ NG RA	CONST								
TEMP. SCALE 100 °C SCALE 2 mg. SHIFT 0 inch iscale SETTING X 2) TIME SCALE (ALT.) 0 SUPPRESSION 0 mg.	RUN N	OPER/ HEATI ATM.	TIME (
TEMP. SCALE 100 °C SCALE 2 mg. scale SHIFT 0 inch SCALE (ALT.) 0 SUPPRESSION									· · · · · · · · · · · · · · · · · · ·		
TEMP. SCALE 100 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0		,	0								
TEMP. SCALE 100 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0	AXIS	mg. inch	Z								
TEMP. SCALE 100 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0	γ-/	2 TTING X	:SS10					-			
TEMP. SCALE 100 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0		CALE	JPPRE								
TEMP. SCALE_100 SHIFT_0 inch TIME SCALE (ALT.)		SC	<u> </u>								
TEMP. SCALE 100 SHIFT 0 inch TIME SCALE (ALT.)) C nch						·			
TEMP. SCALE 1 SHIFT 0 TIME SCALE (AL)		- 4									
TEMP. SCA SHIFT 0 TIME SCAL	(-AXIS	1	E (ALT	1							
		SCA	SCALI					· .			
		TEMP SHIFT	TIME				,	-			
7-21 26H4 2C6H4	<u> </u>					,					
7-21 26H4 5C6H4		.+						_			
	37-21	^{2С6Н} 4 .]2С6Н ₂	-mg.								
0)2CH	DA-	H=N) 2CH 6H5	=								
SAMPLE: DA-37-21 P-(C ₆ H ₅ -CH=N) ₂ C ₆ H ₄ P-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ C ₆ H ₅ N=CHC ₆ H ₅ ZnC1 ₂ SIZE 10 mg.	PLE:	Cn-Bud	10	1							
SAMI P-(C P-(C B-SHS) ZnC1 SIZE	SAM	P-(C P-[(C C ₆ H ₅	SIZE								

MINITED IN STRUMENT PRODUCTS DIVISION

	OPERATOR TO HEATING RATE 15 °C ATM. air	TIME CONSTANT 2 sec							QIDID 950TGA
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION 0. mg.		•					
X-AXIS	TEMP. SCALE 100 °C inch	TIME SCALE (ALT.)							
SAMPLE: DA-37-21-H425	$p - (C_6H_5 - CH = N)_2C_6^{11}t_4$ $p - [(n - Bu0)_2^{CH}]_2C_6^{11}t_4$ $C_6H_5^{N = CHC_6^{11}}$	SIZE 10 mg.					-		

INSTRUMENT PRODUCTS DIVISION

RUN NO. DATE 7-4-65	OPERATOR TO HEATING RATE 15 °C ATM. air							(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION 0 mg.						
X-AXIS	TEMP. SCALE 100 °C inch	TIME SCALE (ALT.) 0						
SAMPLE: DA-37-22	m-(C ₆ H ₅ -CH=N) ₂ C ₆ H ₄ p-[(n-Fu0) ₂ CH] ₂ C ₆ H ₄ no solvent	SIZE10mg.						

,	1		1					-	 			NO. 30	
7-4-65	°C min.	sec.											TGA
DATE 7	15 air	2											∰ 950TGA
٥		FANT											
O.	NG RA	ONS											
RUN NO.	HEATING RATE	TIME CONSTANT					-				7		
		-mg.				<u> </u>	-		-		ć		
		ō					-						
XIS	mg. Inch												
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION										/	
	ALE	PRES											
	SCALE (SCALE SI	SUF											
	o C inch												
	-5	0 (
X-AXIS	ш	TIME SCALE (ALT.)											
×	SCAL	CALE											
	TEMP.	IMES				i							
	F 0)	_								_			· · · · · · · · · · · · · · · · · · ·
H425													
37 -22-	¹ 19 2												
SAMPLE: DA-37-22-H425 m-(C ₆ H ₅ -CH=N) ₂ C ₆ H ₄	p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ no solvent	mg.											
PLE: ₆ H ₅ -C	p-[(n-BuO), no solvent	10	·										
SAM m-(C)]-d	SIZE 10		/									

OFFICE INSTRUMENT PRODUCTS DIVISION

INSTRUMENT PRODUCTS DIVISION	
	•

3	ر min.	 ن									AS AS
8-5-65	0 -	sec.					1-11-11-11-11-11-11-11-11-11-11-11-11-1				(回题) 950TGA
DATE	TO 15	2									
D	10	ANT									 -\e
	G RA	NST									
RUN NO.	OPERATOR HEATING RATE ATM.	TIME CONSTANT									:
R	OPER HEATI ATM.										
		mg.									
			-								
(15	mg. inch 2)	0									
Y-AXIS	2 i iNG X 2	SION									
		SUPPRESSION									
	SCALE_	SUPP									
	0, 0										
	o cinch	0									
	- loh	.)									
X-AXIS	TEMP. SCALE 100 SHIFT 0 ir	TIME SCALE (ALT.)									
×	CALI	ALE									
	AP. S FT	E SC									
	TEMP.	TIM									
-23	: ₆ 114 C ₆ 114									-	
SAMPLE: DA-37-23	m-(C ₆ H ₅ -CH=N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ C ₆ H ₅ N=CHC ₆ H ₅	mg.				٠.					
щ.	L ₅ -CH: BuO); CHC ₆ I	10									
\MPL	-(C ₆ H -[(n- 3H ₅ N=	SIZE		-3							
Š	C D B	S									

		<u>-</u> 1	•			ļ	<u> </u>	i			 	
DATE 8-5-65	O.		sec.							,		WILL 950TGA
<u>-</u> ت												 950
ATE	15		2									
D/	TO	air	NT									
	ATI		STA									
	TOF IG R		OMS									
RUN NO.	OPERATORHEATING RATE_		П									
RUI	OP! HE/	ATM.	TIME CONSTANT									
			mg.									
			0									
SIS	ig.	_										
Y-AXIS	= .=	3 X 2	ON							,		
,	2	NIL	SSI									
	Ш	E SE	PRE									
	SCALE 2 mg.	SCAL	SUPPRESSION				•					
			- 10		/	/	1					
	ے ان											
	°C inch		0		1		1					
,0	100	inch	T.)									
X-AXIS	7		ALT									
/-X	ALE	0	LE (
	TEMP. SCALE_		TIME SCALE (AL)									
	P	SHIFT	NE S				<u> </u>					
	出	SH	Ī								,	
		-			Ì							
25						<u> </u>				<u>-</u>		
-H42						į						
-23	6 ¹¹ 4											
A-37	M)2 ^C 5		.emg.									
'A :	C(11)			1	/							
DIE	675-8 8-08	~	10) 							
AMI	m- (C ₆ ¹¹ 5-CH±M) ₂ C ₆ ¹¹ 4 C ₆ ¹¹ 5 ^N -CHC ₆ ¹¹ 5 ZnCl ₂		SIZE_10									
	- 0 8	1	S							<u></u>		

MINTENENT OF THE PRODUCTS DIVISION

TO THE PROPERTY OF THE PROPERT	BUND HISTRUMENT PRODUCTS DIVIS	WINNESTON DE CELEMBRE	
	5		

RUN NO. DATE 8-11-65	OPERATOR TO HEATING RATE 15 °C Min. air	mg. TIME CONSTANT 2 sec						
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	0						
X-AXIS	TEMP. SCALE 100 °C inch	TIME SCALE (ALT.) 0						
SAMPLE: DA-37-24	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-bu0) ₂ CH] ₂ C ₆ H ₄ no solvent	SIZE10mg.						

								·				endix	NO. 34	
-8-65	OPERATOR TO HEATING RATE 15 °C ATM. 1) N2, 2) rerun in N2,	sec.												OTGA
DATE_8-8-65	o 15 erun fi	2								: :				950TGA
D'	TO T	TANT												₩
NO.	OPERATORHEATING RATE	TIME CONSTANT												
RUN NO.	OPER HEAT ATM.	TIME	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -								i i i			
	·	-mg.					:	:						
	1	0												
Y-AXIS	mg. inch	ON			· · · · · · · · · · · · · · · · · · ·	7	7							
	E 2	SUPPRESSION			/	7			· · · · · · · · · · · · · · · · · · ·					
	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPP											m	
	°C inch												:	
	200 °C inch	0 (:							: : .			1 . 1 . 3 . 3	7	
X-AXIS		: (ALT												
×	TEMP. SCALE	TIME SCALE (ALT											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	TEMP. SHIFT	TIME		: 1 . :										
							1							
2	7 F				:		1							
1-37-1	, ж]2СЫ	-mg.	·	· · · · · · · · · · · · · · · · · · ·			1							
LE: D	,)2C ₆ H, -BuO)2(-CHC ₆ H _L	10				1	+						<u>.</u>	
SAMPLE: DA-37-12	m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ C ₆ H ₅ N=CHC ₆ H ₅	SIZE	,			1								

MINISTRUMENT PRODUCTS DIVISION

/Q	OPERATOR TO HEATING RATE 15 °C ATM. 1) N2, 2) rerun in N2,	TIME CONSTANT 2 sec							
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	0mg.		2					3
X-AXIS	TEMP. SCALE 200 °C inch	TIME SCALE (ALT.) 0			,				
SAMPLE: DA-37-12-H425	m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ C ₆ H ₅ N=CHC ₆ H ₅	SIZE10mg.		: •					

INSTRUMENT PRODUCTS DIVISION

												
DATE 8-8-65	S :	ATM. 1) N ₂ , 2) rerun in N ₂ 3) air TIME CONSTANT 2 sec										DE SOTGA
DAT	TO TE 15	2) reru ANT										
10.	OPERATORHEATING RATE	1) N2, 3) air CONST										
RUN NO.	OPERATOR HEATING RA		11		,							
		Ē	,									
S	, , 5	0							·			
Y-AXIS	SCALE 2 mg.	SSION		7	2						3	
	SCALE	SUPPRESSION				_						
)S(-	
	°C inch	,0									_	
X-AXIS	200	— inch	, 				<u> </u>					
X-A	CALE	AIF								 		
	TEMP. SCALE 200	TIME SCALE (ALT	-									
	F (Ω <u>⊢</u>	1									
н600												
37-12-]2 ^{C6H} 4	o S	,						·			
E: DA-	2 ^C 6 ^H 4 hu0) ₂ CH	10 "										
SAMPLE: DA-37-12-H600	m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ C.H-N=CHC.H-	SIZE										
<u> </u>	<u> μ, υ</u>	, <u>(</u>										

INTERPORT OF REMOUNS 1 CO (MC)

INTERPORT PRODUCTS DIVISION

WITH A COMMAND TO THE STATE OF THE COMMAND TO THE COMM

			 								 NO. 37	
-9-6-	°C min.	TIME CONSTANT 2 sec										OTGA
DATE 8-9-65	TO 15 erun in	7										© 950TGA
D/	TE2) re	ANT										
0.	NG RA	ONST										
RUN NO.	OPERATORHEATING RATE	IME C										
<u>a</u>	OIA	mg.										
									:			
IS	ch ch	0				_						
Y-AXIS	in in NG X 2)	SION	:		~	,	1					
	LE 2 E SETTI	SUPPRESSION									က	
	SCALE 2 mg. inch (SCALE SETTING X 2)	SUP					_					
	• C inch			•								
	ج ا	0										
X-AXIS	TEMP. SCALE 200 SHIFT 0 inc	TIME SCALE (ALT.)			/	S. Contraction						
×	SCAL	CALE				C7-E430						
	TEMP.	ME S				+						
	E S	T				1	\int					
						1						
-13	⁵ 6 ^H 4					\perp						
DA-37	н4 2 ^{СН}]2 ⁽	mg.										
LE:	N)2C6 -BuO)	10										
SAMPLE: DA-37-13	m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ no solvent	SIZE				1						
		ا	 	i				 		1	 	

QUIND | INSTRUMENT PRODUCTS DIVISION

le i	
9-65 o C	OTGA
## PATE 8-9-65 OPERATOR TO HEATING RATE 15 °C ATM. 1) N2, 2) rerun in N3 ATM. 2) a1r TIME CONSTANT 2 sec	QUEDIN 950TGA
DA. TO T	
VG RA VG RA ON STITUTE	
ATM. 1) N2, 2) alt. 1) ATM. 2) alt. 1) ATM. CONSTAN	
CIS	
SCALE 2 mg. inch inch inch inch inch inch inch inch	
LE SET CONTRACTOR OF THE PRESS	
SCA	
o inch	
X-AXIS TEMP. SCALE 200 SHIFT 0 inc TIME SCALE (ALT.)	
SCALE	
SHIFT.	
(425	
7-13-1 2 ^C 6 ^H 4	
1)A-37.	
SAMPLE: DA-37-13-11425 m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ no solvent SIZE 10 mg.	
SAMF m-(H _Z) p-[(m) no so	

INSTRUMENT PRODUCTS DIVISION

RUN NO. DATE 8-9-65	OPERATOR TO C. HEATING RATE 15 °C	ATM. 1) N ₂ , 2) rerun in N ₂ , 3) air								950TGA
Y-AXIS	SCALE 2 mg.	(SCALE SETTING X 2)	SUPPRESSION 0 mg.		2				3	
X-AXIS	SCALE 200 °C		TIME SCALE (ALT.) 0							
SAMPLE: DA-37-13-H600	m-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄	no solvent	SIZE10mg.		A SECTION OF THE PARTY OF THE P					

, •

COLDIND INSTRUMENT PRODUCTS DIVISION

9-3-65	ပ	in N2,	sec.								OTGA
DATE 9		run i	2								OFFICE STORES
ď	JVC TE 1	2) re	LANT								——₩
0.	ATOR NG RA	1) N2,	SONS								
RUN NO.	OPERATOR	ATM. 1) N2, 2) rerun 3) air	IIME								
			mg.				<u> </u>				
Y-AXIS	mg.	2)	0				-		1		
Υ-A	SCALE 2 mg.	TING X	SUPPRESSION		<u> </u>	7					
	SCALE	ALE SEI	PPRE	-/							
	SC	OS)	ns -								3
	0 H		q								
10	200	inch	[]								
X-AXIS	LE 2		E (AL)								
	TEMP. SCALE	0	SCAL		,						
	TEMP	SHIFT	TIME SCALE (AL)			1					
	1										
009н-	26H4 26H4										
37-14	H ₂ N) ₂ (H ₂ N) ₂ (]2 ^C 6 ^H 2	mg.								
DA-)-u %	10) ₂ CH									
SAMPLE: DA-37-14-H600	50 mole % m-(H ₂ N) ₂ C ₆ H ₄ 50 mole % p-(H ₂ N) ₂ C ₆ H ₄	p-[(n-BuO) ₂ CH] ₂ C ₆ H ₄ no solvent	ZE_10								
SA	50	P- 00	SIZE								,

THE INSTRUMENT PRODUCTS DIVISION

RUN NO. DATE 8-10-65	OPERATOR TO C	ATM. 1) N ₂ , 2) rerun in N ₂ ,								COTGA
Y-AXIS	SCALE 2 mg.	(SCALE SETTING X 2)	SUPPRESSION 0 mg.				2		3	
X-AXIS	TEMP. SCALE 200 °C	SHIFT 0 inch	TIME SCALE (ALT.)							
SAMPLE: DA-37-15	$p-(H_2N)_2C_6H_4$ $p-[(n-Bu0)_2CH]_2C_6H_4$	c ₆ H ₅ N=chc ₆ H ₅	SIZE10mg.							

CULPURE | INSTRUMENT PRODUCTS DIVISION

. APPLY CORRECTION FOR NON-LINEARITY OF CHROWEL-ALUMEL THERMOCOUPLES

TEMPERATURE*,°C

							r r		
RUN NO. DATE 8-9-65	OPERATOR TO COLOR OF THEATING RATE 15 °C Min.	ATM. 1) N2, 2) rerun in N2, 3) air TIME CONSTANT 2 sec.							@₽∰® 950TGA
Y-AXIS	SCALE 2 mg. Inch	0 mg.		2				,	
X-AXIS	SCALE 2	SHIFI INCh TIME SCALE (ALT.)						3	
SAMPLE: DA-37-15-H425	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH ₃ C ₆ H ₅ N=CHC ₆ H ₅	SIZE10ny.							

UNDERLY INSTRUMENT PRODUCTS DIVISION

WEICHT, mg.

E I DUPONT DE NEMOUPS & CD 'ME'	INSTRUMENT PRODUCTS DIVISION	34:45	
E I DUPONTOEN	INBUNCATE N	WINDTON M DELAMANE	-
	9		•

0	OPERATOR TO HEATING RATE 15 °C ATM. 1) N2, 2) rerun in N2, 3) air								ONTO SEOTGA
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION 0 mg.		2				3	
X-AXIS	TEMP. SCALE 200 °C inch	TIME SCALE (ALT.) 0							
CAMPIE: DA-37-15-H600	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-5a0) ₂ CH] ₂ C ₆ H ₄ C ₆ H ₅ N=CHC ₆ H ₅	SIZE_10mg.							

2	, , .⊑ ,	•										<u> </u>
11-6	OC n Mair	sec		 								
DATE 8-11-65	TO 15 run i	3) TIME CONSTANT 2 sec										
DA	rer	<u> </u>									 	\bar{\}
	? ХАТЕ	STAI										
0.	OPERATOR HEATING RATE ATM. 1) N ₂ , 2)	3) CON:						1				
RUN NO.	PER. EAT! IM.	ME (·
2	0 = 4			 								
		mg.								÷		
SI	<u>5</u> 5	0										
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPPRESSION					7	2				
	ETTIN	ESS			-							
	SCALE_	IPPR				,			~			
	SC	S										
	اء											
	o inch	0		-								
S	inch	T.)		 							3	
X-AXIS	TEMP. SCALE 200 SHIFT 0 inc	TIME SCALE (AL)				,						
×	CALE	ALE		 		1			1			
	1P. S FT	E SC		 				II.,				
	TEMP. SHIFT	Ţ										
				 								
	7 _H						-					
7-16]2C6	"mg.										
DA-3	6 ^Н 4)2 ^{СН} t											
LE:	N) ₂ C -BuO 1ven	10										
SAMPLE: DA-37-16	$\begin{array}{l} p-(\mathrm{H_2N})_2\mathrm{C}_6\mathrm{H_4} \\ p-\big[(\mathrm{n-BuO})_2\mathrm{CH}]_2\mathrm{C}_6\mathrm{H_4} \\ \mathrm{no\ solvent} \end{array}$	SIZE 10										
S	<u> </u>	S								<u> </u>		

CUDIND INSTRUMENT PRODUCTS DIVISION

RUN NO. DATE 8-11-65	OPERATOR TO HEATING RATE 15 °C ATM. 1) N ₂ , 2) rerun in N ₂ , 3) air TIME CONSTANT 2 sec.							
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2) SUPPRESSION 0 mg.		2					
X-AXIS	TEMP. SCALE 200 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0						3	
SAMPLE: DA-37-16-H425	p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ no solvent SIZE 10 mg.	1/						

INSTRUMENT PRODUCTS DIVISION

47

			,	 		 		 		
12-65	OPERATOR JVC HEATING RATE 15 °C min. ATM. 1) N2, 2) rerun in N2,	sec.								OTGA
DATE8-12-65	JVC 15 erun in	2	·							
D'	ATE 2) re	TANT								₩
60.	OPERATOR HEATING RATE ATM. 1) N2, 2) 1	CONS								
RUN NO.	OPER HEAT ATM	TIME					-			
		_mg.								
										·
Y-AXIS	mg. inch	0 NO								-
\	SETTING	SUPPRESSION 0		7	7					
	SCALE 2 mg. inch (SCALE SETTING X 2)	SUPP								
									3	
	°C inch	0								
X-AXIS	TEMP. SCALE 200 SHIFT 0 inch	TIME SCALE (ALT.)			-				1	
×	SCALE	CALE							/	
	TEMP. S	IME S			-					
	⊢ S	–			 [
0091										
7-16-1	2 ^C ₅H4	ċ								
SAMPLE: DA-37-16-H600	$\begin{array}{l} P^-(H_2N)_2C_6H_4 \\ p^-[(n-Bu0)_2CH]_2C_5H_4 \\ no\ solvent \end{array}$.m.								
MPLE	p-(H ₂ N) ₂ C ₆ p-[(n-BuO) no solvent	SIZE 10	-							
SAI)-d	SIZ	7	1]					

COUNTY INSTRUMENT PRODUCTS DIVISION

	· · · · · · · · · · · · · · · · · · ·									 			
23-65	ပ	ATM. 1) N2, 2) rerun in N2,	sec.										OTGA
DATE 9-23-65	15	run i	2										—————————————————————————————————————
/q	JVC TE 1	2) re	LANT										₩
0.	ATOR NG RA	1) N ₂ ,	CONS										
RUN NO.	OPERATOR HEATING RATE	ATM.	TIME (
			mg.										
			0					<u> </u>	`				<u>-</u>
Y-AXIS	inch	2)	7										
γ-γ	7	(SCALE SETTING X 2)	SUPPRESSION			77							
	SCALE	ALE SE	IPPRE				:						
	SC)S)	- SL						ļ			+3	
	o iich										-		
S		- inch	T.) 0										
X-AXIS	/LE_2(0	E (AL										
	TEMP. SCALE 200		TIME SCALE (ALT.)										:
	TEMI	SHIFT	TIME										
										 r			
.неоо	C ₆ H ₄	7 1								 			
37-17-	(H ₂ N) ₂ (H ₂ N) ₂	n J2~6r	-mg.							 			
SAMPLE: DA-37-17-H600	25 mole % p- $(H_2N)_2C_6H_4$ 75 mole % m- $(H_2N)_2C_6H_4$	eur) 2 ^c	10										
AMPL	5 mole 5 mole 5 mole	p-[(n-buc) no solvent	SIZE	 									
S		. G	S		<u> </u>	<u> </u>	ن نا ا				أسنسا		

CUPULL INSTRUMENT PRODUCTS DIVISION

	·					 			 	
24-65	OPERATOR JVC HEATING RATE 15 °C ATM. 1) N2, 2) rerun in N2, 3) air TIME CONSTANT 2 sec.									OTGA
DATE8-24-65	JVC 15 rerun 1									950TGA
D	ATE									₩
NO.	OPERATOR HEATING RATE ATM. 1) N2, 2) 3) air TIME CONSTAN									
RUN NO.	OPEF HEAT ATM. TIME									
	, S						·, , , , , , , , , , , , , , , , , , ,			
	0									
Y-AXIS	mg. inch 3 x 2)			2						
λ .	SCALE 2 in (SCALE SETTING X 2)			T						
	SCALE (SCALE S SUPPR					 				
	.√s		1/1							n
	200 °C inch T.) 0		1/					<u> </u>		
X-AXIS	E200inc_	<i>-:</i> ·								/
×	TEMP. SCALE_2 SHIFT_0 TIME SCALE (AL)	7	/							
	TEMP. SHIFT. TIME S									
	•			+						
-неоо	26H4 26H4 4				7			····		
-37-18	- (H ₂ N) ₂ (cH ₁ 2C ₆ H,									
SAMPLE: DA-37-18-H600	25 mole % m-(H ₂ N) ₂ C ₆ H ₄ 75 mole % p-(H ₂ N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ no solvent SIZE 10 mg.									
AMPL	25 mole % 75 mole % p-[(n-Bu0) no solvent SIZE 10			$+ \parallel$	·		<u> </u>	<u>-</u>		
S	8 L G R R				·		1 1			_

GIPIND INSTRUMENT PRODUCTS BIVISION

F

ŗ

3-65	ပ	ATM. 1) N2, 2) rerun in N2,	sec.								OTGA
DATE 9-3-65	JVC 15	run i	2								Ø∭® 950TGA
D/	J.	2) re	TANT								₩
0.	ATOR.	1) N2,	CONS	·							
RUN NO.	OPERATOR	ATM.	TIME								
			0								
Y-AXIS	mg.	(5)	z								
7	SCALE 2 mg.	ETTING)	SUPPRESSION		7	7					
	CALE	CALESI	UPPR		 -/						
	S	<u> </u>	<u> </u>		-				 		
	် ဂ မ်	i	0	•	 				 		 <u>ه</u>
(IS	200	inch	LT.)_		/						
X-AXIS	ALE	0	LE (A								
	TEMP. SCALE	F	TIME SCALE (ALT.)								
	TEN	SHIFT	TIM	·							
0		flux					/				
19-н60	6 ^H 4	ial re									
A-37-	¹ 4 сн] ₂ с	init	mg.								
SAMPLE: DA-37-19-H600	$p-(H_2N)_2C_6H_4$ $p-[(n-Bu0)_2CH]_2C_6H_4$	lvent	10								
SAMP	p-(H ₂ p-[(n	no so	SIZE	.1							
 -				L	 			ليبييا	 <u></u>	L	

• •

CUPIND INSTRUMENT PRODUCTS DIVISION

Ą

	Ĺ	د
	0	
1	•	
	u	Ц
	۵	۲
	Ξ)
	۲	-
	<	C
	۵	۲
	L	Ц
	۵	L,
	2	≥
	ū	ŭ
	Ē	_

								 			MPP		No. 30	
DATE_8-26-65	ပို	min	sec.											OTGA
TE 8	5		2		-						· · · · · · · · · · · · · · · · · · ·		4	950TGA
DA	JVC FE 15	Ü	ANT											
]	TOR_	ltroge	ONST											
RUN NO.	OPERATOR J	ATM. nitrogen	TIME CONSTANT											
~	O I	`∢	mg.											
						! !						·		
IS	6-5		0				ļ !		•					
Y-AXIS	E .č	NG X 2)	NOIS											
	E 2	E SETTI	SUPPRESSION					<u>,</u>						
	SCALE 2 mg.	(SCAL	SUPF											
	°C inch		0	•										
		inch												
X-AXIS	LE 200		TIME SCALE (ALT.)	·										
	. SCA	0	SCAL							1.00				
	TEMP. SCALE	SHIFT	TIME			/								
		···-				1								
-н425	.•	(not recycled)				1								
37-20	₅ н ₄] ₂ с ₆ н ₂	not re	mg.			 		 	,					
DA-	H=N ₂ (0) ₂ CH	nt (1	E				,							
SAMPLE: DA-37-20-H425	$p-(C_6H_5-CH=N)_2C_6H_4$ $p-[(n-Bu0)_2CH]_2C_6H_4$	Z nCl ₂ no solvent	E10									· · · · · · · · · · · · · · · · · · ·		
SAN	J-d D)-d	Z _{nC}	SIZ		,									

CIPIND INSTRUMENT PRODUCTS DIVISION

۴

RUN NO. DATE 8-26x65	OFFIT 950TGA
Öğ E	95-
Ö E	
Ö E	- ₩-
Ö E	•
Ö E	
Y-AXIS mg. inch 1	ı
SCALE 2 ir (SCALE SETTING X 2) SUPPRESSION 2	
SCALE 2 mg. inch inch iscale setting x 2) SUPPRESSION 2 1 2 2 1 2 4	
SHIFT 0 inch TIME SCALE (ALT.)	
SCALE (AL. CALE (AL.	
SHIFT O TIME SCALE (A	
SHIFT TIME SO	
4 H	
L-37-21 SN)2C6H SOCH 3C6H	
1: DACH=N HC6H5 10 10 10	
SAMPLE: DA-37-21 p-(C ₆ H ₅ -CH=N) ₂ C ₆ H ₄ c ₆ H ₅ N=CHC ₆ H ₅ ZnCl ₂ SIZE 10 mg	_
SA D C C C C C C C C C C C C C C	

GIVIND INSTRUMENT PRODUCTS DIVISION

¢

										Pendia	NO. 3	_	
DATE 8-12-65	OPERATOR TO C C C C C C C C C C C C C C C C C C	sec										TGA	5
TE 8-	15 run fi	2										9501GA	<u> </u>
DA	TO TO 2) Tel	TIME CONSTANT 2											-
	OPERATORHEATING RATE_ATM_1) N ₂ , 2)	air NST											
RUN NO.	OPERATOR. HEATING RAATM. 1) N2,	ME CO										ļ	
R	A H			ļ									
		.gm											
		0						٠					
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2)	NO			1 2 2								
_	2 SETTING	SUPPRESSION			7								1
	SCALE (SCALE	UPPR		. /									-
	N 8	S											-
	o inch	0		.								m	
X-AXIS	200 inch	inch T.)											
	LE	TIME SCALE (AL)			ĺ							1	
	SCA	SCAL	/				-						1
	TEMP. SHIFT	IME											
- 01		-			-	-	·		 ļ			!	-
SAMPLE: DA-37-22-H425 m-(C ₆ H ₅ CH=N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ ZnCl ₂ no solvent					_								-
	mg.												
	5H5CH= n-BuO) !	10											
SAMI	m-(C _t p-[(r ZnCl ₂	SIZE 10											
						اا	 I		 				1

VUTULU | INSTRUMENT PRODUCTS DIVISION

RUN NO. DATE 8-12-65	OPERATOR TO HEATING RATE 15 °C ATM. 1) N2, 2) rerun in N2, 3) air TIME CONSTANT 2 sec.				©III 950TGA
Y-AXIS	SCALE 2 mg. inch (SCALE SETTING X 2) SUPPRESSION 0 mg.		2		
X-AXIS	TEMP. SCALE 200 °C inch SHIFT 0 inch TIME SCALE (ALT.) 0				3
SAMPLE: DA-37-23-H425	m-(C ₆ H ₅ -CH=N) ₂ C ₆ H ₄ p-[(n-Bu0) ₂ CH] ₂ C ₆ H ₄ C ₆ H ₅ N=CHC ₆ H ₅ ZnCl ₂ SIZE 10 mg.				

CULULY INSTRUMENT PRODUCTS DIVISION

K

•

ပ
0
•
*
ш
\mathbf{x}
E
Ø
2
ш
۵.
Σ
ш

. APPLY CORRECTION FOR NON-LINEARITY OF CHROMEL-ALUMEL THERMOCOUPLES

Δ	OPERATOR TO C. HEATING RATE 15 °C	ATM. 1) N2, 2) rerun in N2,							© 950TGA	•
Y-AXIS	SCALE 2 mg.	(SCALE SETTING X 2)	SUPPRESSION 0 mg.							
X-AXIS	TEMP. SCALE 200 °C	SHIFT 0 inch	TIME SCALE (ALT.)						E .	
SAMPLE: DA-37-24	$p-(H_2N)_2C_6H_4$ $p-[(n-Bu0)_2CH]_2C_6H_4$	no solvent yellow polymer	SIZE_10mg.							

*4

CUPURD | INSTRUMENT PRODUCTS DIVISION

•

4